Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 300(3): 105767, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367672

RESUMEN

Approximately 5 to 15% of nonmedullary thyroid cancers (NMTC) present in a familial form (familial nonmedullary thyroid cancers [FNMTC]). The genetic basis of FNMTC remains largely unknown, representing a limitation for diagnostic and clinical management. Recently, germline mutations in DNA repair-related genes have been described in cases with thyroid cancer (TC), suggesting a role in FNMTC etiology. Here, two FNMTC families were studied, each with two members affected with TC. Ninety-four hereditary cancer predisposition genes were analyzed through next-generation sequencing, revealing two germline CHEK2 missense variants (c.962A > C, p.E321A and c.470T > C, p.I157T), which segregated with TC in each FNMTC family. p.E321A, located in the CHK2 protein kinase domain, is a rare variant, previously unreported in the literature. Conversely, p.I157T, located in CHK2 forkhead-associated domain, has been extensively described, having conflicting interpretations of pathogenicity. CHK2 proteins (WT and variants) were characterized using biophysical methods, molecular dynamics simulations, and immunohistochemistry. Overall, biophysical characterization of these CHK2 variants showed that they have compromised structural and conformational stability and impaired kinase activity, compared to the WT protein. CHK2 appears to aggregate into amyloid-like fibrils in vitro, which opens future perspectives toward positioning CHK2 in cancer pathophysiology. CHK2 variants exhibited higher propensity for this conformational change, also displaying higher expression in thyroid tumors. The present findings support the utility of complementary biophysical and in silico approaches toward understanding the impact of genetic variants in protein structure and function, improving the current knowledge on CHEK2 variants' role in FNMTC genetic basis, with prospective clinical translation.


Asunto(s)
Quinasa de Punto de Control 2 , Síndromes Neoplásicos Hereditarios , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Quinasa de Punto de Control 2/química , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndromes Neoplásicos Hereditarios/genética , Estudios Prospectivos , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Dominios Proteicos , Masculino , Femenino , Persona de Mediana Edad
2.
Nucleic Acids Res ; 49(2): 1094-1113, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367824

RESUMEN

The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/biosíntesis , Adenosina Trifosfato/metabolismo , Proteínas del Ojo/metabolismo , Técnicas de Inactivación de Genes , Genes Reporteros , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos , Dominios Proteicos , Mapeo de Interacción de Proteínas , Proteómica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Commun ; 15(1): 3516, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664367

RESUMEN

Chemical cross-linking reactions (XL) are an important strategy for studying protein-protein interactions (PPIs), including low abundant sub-complexes, in structural biology. However, choosing XL reagents and conditions is laborious and mostly limited to analysis of protein assemblies that can be resolved using SDS-PAGE. To overcome these limitations, we develop here a denaturing mass photometry (dMP) method for fast, reliable and user-friendly optimization and monitoring of chemical XL reactions. The dMP is a robust 2-step protocol that ensures 95% of irreversible denaturation within only 5 min. We show that dMP provides accurate mass identification across a broad mass range (30 kDa-5 MDa) along with direct label-free relative quantification of all coexisting XL species (sub-complexes and aggregates). We compare dMP with SDS-PAGE and observe that, unlike the benchmark, dMP is time-efficient (3 min/triplicate), requires significantly less material (20-100×) and affords single molecule sensitivity. To illustrate its utility for routine structural biology applications, we show that dMP affords screening of 20 XL conditions in 1 h, accurately identifying and quantifying all coexisting species. Taken together, we anticipate that dMP will have an impact on ability to structurally characterize more PPIs and macromolecular assemblies, expected final complexes but also sub-complexes that form en route.


Asunto(s)
Reactivos de Enlaces Cruzados , Fotometría , Desnaturalización Proteica , Reactivos de Enlaces Cruzados/química , Fotometría/métodos , Proteínas/química , Proteínas/metabolismo , Electroforesis en Gel de Poliacrilamida/métodos , Mapeo de Interacción de Proteínas/métodos , Espectrometría de Masas/métodos , Humanos
4.
J Mol Biol ; 434(19): 167760, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901867

RESUMEN

DPCD is a protein that may play a role in cilia formation and whose absence leads to primary ciliary dyskinesia (PCD), a rare disease caused by impairment of ciliated cells. Except for high-throughput studies that identified DPCD as a possible RUVBL1 (R1) and RUVBL2 (R2) partner, no in-depth cellular, biochemical, and structural investigation involving DPCD have been reported so far. R1 and R2 proteins are ubiquitous highly conserved AAA + family ATPases that assemble and mature a plethora of macromolecular complexes and are pivotal in numerous cellular processes, especially by guaranteeing a co-chaperoning function within R2TP or R2TP-like machineries. In the present study, we identified DPCD as a new R1R2 partner in vivo. We show that DPCD interacts directly with R1 and R2 in vitro and in cells. We characterized the physico-chemical properties of DPCD in solution and built a 3D model of DPCD. In addition, we used a variety of orthogonal biophysical techniques including small-angle X-ray scattering, structural mass spectrometry and electron microscopy to assess the molecular determinants of DPCD interaction with R1R2. Interestingly, DPCD disrupts the dodecameric state of R1R2 complex upon binding and this interaction occurs mainly via the DII domains of R1R2.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Portadoras , ADN Helicasas , Complejos Multiproteicos , Proteínas , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Portadoras/química , ADN Helicasas/química , Humanos , Complejos Multiproteicos/química , Proteínas/química
5.
Nat Commun ; 9(1): 2093, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844425

RESUMEN

R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Testículo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Superficie/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Portadoras/genética , Línea Celular , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Transducción de Señal
6.
Oxid Med Cell Longev ; 2017: 8940321, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28421128

RESUMEN

The human disease classical homocystinuria results from mutations in the gene encoding the pyridoxal 5'-phosphate- (PLP-) dependent cystathionine ß-synthase (CBS), a key enzyme in the transsulfuration pathway that controls homocysteine levels, and is a major source of the signaling molecule hydrogen sulfide (H2S). CBS activity, contributing to cellular redox homeostasis, is positively regulated by S-adenosyl-L-methionine (AdoMet) but fully inhibited upon CO or NO• binding to a noncatalytic heme moiety. Despite extensive studies, the molecular basis of several pathogenic CBS mutations is not yet fully understood. Here we found that the ferrous heme of the reportedly mild p.P49L CBS variant has altered spectral properties and markedly increased affinity for CO, making the protein much more prone than wild type (WT) CBS to inactivation at physiological CO levels. The higher CO affinity could result from the slightly higher flexibility in the heme surroundings revealed by solving at 2.80-Å resolution the crystallographic structure of a truncated p.P49L. Additionally, we report that p.P49L displays impaired H2S-generating activity, fully rescued by PLP supplementation along the purification, despite a minor responsiveness to AdoMet. Altogether, the results highlight how increased propensity to CO inactivation of an otherwise WT-like variant may represent a novel pathogenic mechanism in classical homocystinuria.


Asunto(s)
Cistationina betasintasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Cristalografía por Rayos X , Cistationina betasintasa/química , Cistationina betasintasa/genética , Hemo/química , Hemo/metabolismo , Humanos , Cinética , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , S-Adenosilmetionina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA