Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochem Biophys Res Commun ; 606: 10-16, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35338853

RESUMEN

BACKGROUND: There is compelling evidence implicating dysregulated inflammation in the mechanism of ventricular remodeling and heart failure (HF) after MI. The transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2, encoded by Nfe2l2) is a promising target in this context since it impedes transcriptional upregulation of pro-inflammatory cytokines and is anti-inflammatory in various murine models. OBJECTIVES: We aimed to investigate the contribution of Nrf2 to the inflammatory response after experimental myocardial infarction (MI). METHODS: We subjected Nrf2-/- mice and wild type (WT) controls to permanent left coronary artery (LCA) ligation. The inflammatory response was investigated with fluorescence-activated cell sorting (FACS) analysis of peripheral blood and heart cell suspensions, together with qRT-PCR of infarcted tissue for chemokines and their receptors. To investigate whether Nrf2-mediated transcription is a dedicated function of leukocytes, we interrogated publicly available RNA-sequencing (RNA-seq) data from mouse hearts after permanent LCA ligation for Nrf2-regulated gene (NRG) expression. RESULTS: FACS analysis demonstrated a profoundly inflamed phenotype in the hearts of global Nrf2-/- mice as compared to WT mice after MI. Moreover, infarcted tissue from Nrf2-/- mice displayed higher expression of mRNA coding for inflammatory cytokines, chemokines, and their receptors, including IL-6, Ccl2, and Cxcr4. RNA-seq analysis showed upregulated NRG expression in WT mice after MI compared to naive mice, which was significantly higher in bioinformatically isolated CCR2+ cells. CONCLUSIONS: Taken together, the results suggest that Nrf2 signalling in leukocytes, and possibly CCR2+ monocytes and monocyte-derived cardiac resident macrophages, may be potential targets to prevent post-MI ventricular remodeling.


Asunto(s)
Infarto del Miocardio , Factor 2 Relacionado con NF-E2/metabolismo , Remodelación Ventricular , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Factor 2 Relacionado con NF-E2/genética , Remodelación Ventricular/fisiología
2.
Arterioscler Thromb Vasc Biol ; 41(2): 698-710, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33054395

RESUMEN

OBJECTIVE: The superoxide-generating Nox2 (NADPH oxidase-2) is expressed in multiple cell types. Previous studies demonstrated distinct roles for cardiomyocyte, endothelial cell, and leukocyte cell Nox2 in ANG II (angiotensin II)-induced cardiovascular remodeling. However, the in vivo role of fibroblast Nox2 remains unclear. Approach and Results: We developed a novel mouse model with inducible fibroblast-specific deficiency of Nox2 (fibroblast-specific Nox2 knockout or Fibro-Nox2KO mice) and investigated the responses to chronic ANG II stimulation. Fibro-Nox2KO mice showed no differences in basal blood pressure or vessel wall morphology, but the hypertensive response to ANG II infusion (1.1 mg/[kg·day] for 14 days) was substantially reduced as compared to control Nox2-Flox littermates. This was accompanied by a significant attenuation of aortic and resistance vessel remodeling. The conditioned medium of ANG II-stimulated primary fibroblasts induced a significant increase in vascular smooth muscle cell growth, which was inhibited by the short hairpin RNA (shRNA)-mediated knockdown of fibroblast Nox2. Mass spectrometric analysis of the secretome of ANG II-treated primary fibroblasts identified GDF6 (growth differentiation factor 6) as a potential growth factor that may be involved in these effects. Recombinant GDF6 induced a concentration-dependent increase in vascular smooth muscle cell growth while chronic ANG II infusion in vivo significantly increased aortic GDF6 protein levels in control mice but not Fibro-Nox2KO animals. Finally, silencing GDF6 in fibroblasts prevented the induction of vascular smooth muscle cell growth by fibroblast-conditioned media in vitro. CONCLUSIONS: These results indicate that fibroblast Nox2 plays a crucial role in the development of ANG II-induced vascular remodeling and hypertension in vivo. Mechanistically, fibroblast Nox2 may regulate paracrine signaling to medial vascular smooth muscle cells via factors, such as GDF6.


Asunto(s)
Fibroblastos/enzimología , Hipertensión/enzimología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasa 2/metabolismo , Comunicación Paracrina , Remodelación Vascular , Angiotensina II , Animales , Aorta/metabolismo , Aorta/patología , Aorta/fisiopatología , Presión Sanguínea , Células Cultivadas , Modelos Animales de Enfermedad , Factor 6 de Diferenciación de Crecimiento/genética , Factor 6 de Diferenciación de Crecimiento/metabolismo , Hipertensión/inducido químicamente , Hipertensión/genética , Hipertensión/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , NADPH Oxidasa 2/genética , Transducción de Señal
3.
Circulation ; 141(15): 1249-1265, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32078387

RESUMEN

BACKGROUND: The adult mammalian heart has limited regenerative capacity, mostly attributable to postnatal cardiomyocyte cell cycle arrest. In the last 2 decades, numerous studies have explored cardiomyocyte cell cycle regulatory mechanisms to enhance myocardial regeneration after myocardial infarction. Pkm2 (Pyruvate kinase muscle isoenzyme 2) is an isoenzyme of the glycolytic enzyme pyruvate kinase. The role of Pkm2 in cardiomyocyte proliferation, heart development, and cardiac regeneration is unknown. METHODS: We investigated the effect of Pkm2 in cardiomyocytes through models of loss (cardiomyocyte-specific Pkm2 deletion during cardiac development) or gain using cardiomyocyte-specific Pkm2 modified mRNA to evaluate Pkm2 function and regenerative affects after acute or chronic myocardial infarction in mice. RESULTS: Here, we identify Pkm2 as an important regulator of the cardiomyocyte cell cycle. We show that Pkm2 is expressed in cardiomyocytes during development and immediately after birth but not during adulthood. Loss of function studies show that cardiomyocyte-specific Pkm2 deletion during cardiac development resulted in significantly reduced cardiomyocyte cell cycle, cardiomyocyte numbers, and myocardial size. In addition, using cardiomyocyte-specific Pkm2 modified RNA, our novel cardiomyocyte-targeted strategy, after acute or chronic myocardial infarction, resulted in increased cardiomyocyte cell division, enhanced cardiac function, and improved long-term survival. We mechanistically show that Pkm2 regulates the cardiomyocyte cell cycle and reduces oxidative stress damage through anabolic pathways and ß-catenin. CONCLUSIONS: We demonstrate that Pkm2 is an important intrinsic regulator of the cardiomyocyte cell cycle and oxidative stress, and highlight its therapeutic potential using cardiomyocyte-specific Pkm2 modified RNA as a gene delivery platform.


Asunto(s)
Proteínas Portadoras/metabolismo , Ciclo Celular/fisiología , Proteínas de la Membrana/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración/fisiología , Hormonas Tiroideas/metabolismo , Animales , Humanos , Ratones , Transfección , Proteínas de Unión a Hormona Tiroide
4.
FASEB J ; 34(2): 2087-2104, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31907991

RESUMEN

Proteinuria is associated with renal function decline and cardiovascular mortality. This association may be attributed in part to alterations of Klotho expression induced by albuminuria, yet the underlying mechanisms are unclear. The presence of albumin decreased Klotho expression in the POD-ATTAC mouse model of proteinuric kidney disease as well as in kidney epithelial cell lines. This downregulation was related to both decreased Klotho transcription and diminished protein half-life, whereas cleavage by ADAM proteases was not modified. The regulation was albumin specific since it was neither observed in the analbuminemic Col4α3-/- Alport mice nor induced by exposure of kidney epithelial cells to purified immunoglobulins. Albumin induced features of ER stress in renal tubular cells with ATF3/ATF4 activation. ATF3 and ATF4 induction downregulated Klotho through altered transcription mediated by their binding on the Klotho promoter. Inhibiting ER stress with 4-PBA decreased the effect of albumin on Klotho protein levels without altering mRNA levels, thus mainly abrogating the increased protein degradation. Taken together, albuminuria decreases Klotho expression through increased protein degradation and decreased transcription mediated by ER stress induction. This implies that modulating ER stress may improve proteinuria-induced alterations of Klotho expression, and hence renal and extrarenal complications associated with Klotho loss.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Albuminuria/metabolismo , Regulación hacia Abajo , Estrés del Retículo Endoplásmico , Glucuronidasa/biosíntesis , Túbulos Renales/metabolismo , Transcripción Genética , Factor de Transcripción Activador 3/genética , Albuminuria/genética , Albuminuria/patología , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Glucuronidasa/genética , Humanos , Túbulos Renales/patología , Proteínas Klotho , Ratones , Ratones Noqueados
5.
EMBO J ; 35(3): 319-34, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26742780

RESUMEN

Phosphorylation of translation initiation factor 2α (eIF2α) attenuates global protein synthesis but enhances translation of activating transcription factor 4 (ATF4) and is a crucial evolutionarily conserved adaptive pathway during cellular stresses. The serine-threonine protein phosphatase 1 (PP1) deactivates this pathway whereas prolonging eIF2α phosphorylation enhances cell survival. Here, we show that the reactive oxygen species-generating NADPH oxidase-4 (Nox4) is induced downstream of ATF4, binds to a PP1-targeting subunit GADD34 at the endoplasmic reticulum, and inhibits PP1 activity to increase eIF2α phosphorylation and ATF4 levels. Other PP1 targets distant from the endoplasmic reticulum are unaffected, indicating a spatially confined inhibition of the phosphatase. PP1 inhibition involves metal center oxidation rather than the thiol oxidation that underlies redox inhibition of protein tyrosine phosphatases. We show that this Nox4-regulated pathway robustly enhances cell survival and has a physiologic role in heart ischemia-reperfusion and acute kidney injury. This work uncovers a novel redox signaling pathway, involving Nox4-GADD34 interaction and a targeted oxidative inactivation of the PP1 metal center, that sustains eIF2α phosphorylation to protect tissues under stress.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , NADPH Oxidasas/metabolismo , Proteína Fosfatasa 1/metabolismo , Receptores de Neuropéptido Y/antagonistas & inhibidores , Transducción de Señal , Animales , Línea Celular , Humanos , NADPH Oxidasa 4 , Oxidación-Reducción
6.
Circ Res ; 120(5): 784-798, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-27920123

RESUMEN

RATIONALE: In the endothelium, insulin stimulates endothelial NO synthase (eNOS) to generate the antiatherosclerotic signaling radical NO. Insulin-resistant type 2 diabetes mellitus is associated with reduced NO availability and accelerated atherosclerosis. The effect of enhancing endothelial insulin sensitivity on NO availability is unclear. OBJECTIVE: To answer this question, we generated a mouse with endothelial cell (EC)-specific overexpression of the human insulin receptor (hIRECO) using the Tie2 promoter-enhancer. METHODS AND RESULTS: hIRECO demonstrated significant endothelial dysfunction measured by blunted endothelium-dependent vasorelaxation to acetylcholine, which was normalized by a specific Nox2 NADPH oxidase inhibitor. Insulin-stimulated phosphorylation of protein kinase B was increased in hIRECO EC as was Nox2 NADPH oxidase-dependent generation of superoxide, whereas insulin-stimulated and shear stress-stimulated eNOS activations were blunted. Phosphorylation at the inhibitory residue Y657 of eNOS and expression of proline-rich tyrosine kinase 2 that phosphorylates this residue were significantly higher in hIRECO EC. Inhibition of proline-rich tyrosine kinase 2 improved insulin-induced and shear stress-induced eNOS activation in hIRECO EC. CONCLUSIONS: Enhancing insulin sensitivity specifically in EC leads to a paradoxical decline in endothelial function, mediated by increased tyrosine phosphorylation of eNOS and excess Nox2-derived superoxide. Increased EC insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide. Inhibition of proline-rich tyrosine kinase 2 restores insulin-induced and shear stress-induced NO production. This study demonstrates for the first time that increased endothelial insulin sensitivity leads to a proatherosclerotic imbalance between NO and superoxide.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Resistencia a la Insulina/fisiología , Transducción de Señal/fisiología , Animales , Aterosclerosis/patología , Células Cultivadas , Células Endoteliales/patología , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Cultivo de Órganos
7.
Circulation ; 135(22): 2163-2177, 2017 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-28298457

RESUMEN

BACKGROUND: Hypertension caused by increased renin-angiotensin system activation is associated with elevated reactive oxygen species production. Previous studies implicate NADPH oxidase (Nox) proteins as important reactive oxygen species sources during renin-angiotensin system activation, with different Nox isoforms being potentially involved. Among these, Nox2 is expressed in multiple cell types, including endothelial cells, fibroblasts, immune cells, and microglia. Blood pressure (BP) is regulated at the central nervous system, renal, and vascular levels, but the cell-specific role of Nox2 in BP regulation is unknown. METHODS: We generated a novel mouse model with a floxed Nox2 gene and used Tie2-Cre, LysM Cre, or Cdh5-CreERT2 driver lines to develop cell-specific models of Nox2 perturbation to investigate its role in BP regulation. RESULTS: Unexpectedly, Nox2 deletion in myeloid but not endothelial cells resulted in a significant reduction in basal BP. Both Tie2-CreNox2 knockout (KO) mice (in which Nox2 was deficient in both endothelial cells and myeloid cells) and LysM CreNox2KO mice (in which Nox2 was deficient in myeloid cells) had significantly lower BP than littermate controls, whereas basal BP was unaltered in Cdh5-CreERT2 Nox2KO mice (in which Nox2 is deficient only in endothelial cells). The lower BP was attributable to an increased NO bioavailability that dynamically dilated resistance vessels in vivo under basal conditions without a change in renal function. Myeloid-specific Nox2 deletion had no effect on angiotensin II-induced hypertension, which, however, was blunted in Tie2-CreNox2KO mice, along with preservation of endothelium-dependent relaxation during angiotensin II stimulation. CONCLUSIONS: We identify a hitherto unrecognized modulation of basal BP by myeloid cell Nox2, whereas endothelial cell Nox2 regulates angiotensin II-induced hypertension. These results identify distinct cell-specific roles for Nox2 in BP regulation.


Asunto(s)
Presión Sanguínea/fisiología , Células Endoteliales/enzimología , Hipertensión/enzimología , Glicoproteínas de Membrana/deficiencia , Células Mieloides/enzimología , NADPH Oxidasas/deficiencia , Angiotensina II/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Células Endoteliales/efectos de los fármacos , Hipertensión/inducido químicamente , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/efectos de los fármacos , NADPH Oxidasa 2
8.
J Mol Cell Cardiol ; 98: 11-7, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27397876

RESUMEN

BACKGROUND: Increased reactive oxygen species (ROS) production is involved in the process of adverse cardiac remodeling and development of heart failure after myocardial infarction (MI). NADPH oxidase-2 (Nox2) is a major ROS source within the heart and its activity increases after MI. Furthermore, genetic deletion of Nox2 is protective against post-MI cardiac remodeling. Nox2 levels may increase both in cardiomyocytes and endothelial cells and recent studies indicate cell-specific effects of Nox2, but it is not known which of these cell types is important in post-MI remodeling. METHODS AND RESULTS: We have generated transgenic mouse models in which Nox2 expression is targeted either to cardiomyocytes (cardio-Nox2TG) or endothelial cells (endo-Nox2TG). We here studied the response of cardio-Nox2TG mice, endo-Nox2TG mice and matched wild-type littermates (WT) to MI induced by permanent left coronary artery ligation up to 4weeks. Initial infarct size assessed by magnetic resonance imaging (MRI) and cardiac dysfunction were similar among groups. Cardiomyocyte hypertrophy and interstitial fibrosis were augmented in cardio-Nox2TG compared to WT after MI and post-MI survival tended to be worse whereas endo-Nox2TG mice showed no significant difference compared to WT. CONCLUSIONS: These results indicate that cardiomyocyte rather than endothelial cell Nox2 may have the more important role in post-MI remodeling.


Asunto(s)
Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Animales , Apoptosis/genética , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Fibrosis , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hemodinámica , Ratones , Ratones Transgénicos , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/metabolismo , NADPH Oxidasa 2 , Especificidad de Órganos/genética , Especies Reactivas de Oxígeno/metabolismo , Disfunción Ventricular Izquierda , Remodelación Ventricular
9.
J Mol Cell Cardiol ; 73: 103-11, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24530760

RESUMEN

It is increasingly evident that redox-dependent modifications in cellular proteins and signaling pathways (or redox signaling) play important roles in many aspects of cardiac hypertrophy. Indeed, these redox modifications may be intricately linked with the process of hypertrophy wherein there is not only a significant increase in myocardial O2 consumption but also important alterations in metabolic processes and in the local generation of O2-derived reactive species (ROS) that modulate and/or amplify cell signaling pathways. This article reviews our current knowledge of redox signaling pathways and their roles in cardiac hypertrophy. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System".


Asunto(s)
Cardiomegalia/metabolismo , NADPH Oxidasas/metabolismo , Animales , Humanos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
10.
Arterioscler Thromb Vasc Biol ; 33(4): e104-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23393389

RESUMEN

OBJECTIVE: Reactive oxygen species-generating nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase proteins (Noxs) are involved in cell differentiation, migration, and apoptosis. Nox4 is unique among Noxs in being constitutively active, and its subcellular localization may therefore be particularly important. In this study, we identified and characterized a novel nuclear-localized 28-kDa splice variant of Nox4 in vascular cells. APPROACH AND RESULTS: Nox4 immunoreactivity was noted in the nucleus and nucleolus of vascular smooth muscle cells and multiple other cell types by confocal microscopy. Cell fractionation, sequence analyses, and siRNA studies indicated that the nuclear-localized Nox4 is a 28-kDa splice variant, Nox4D, which lacks putative transmembrane domains. Nox4D overexpression resulted in significant NADPH-dependent reactive oxygen species production as detected by several different methods and caused increased phosphorylation of extracellular-signal-regulated kinase1/2 and the nuclear transcription factor Elk-1. Overexpression of Nox4D could also induce DNA damage as assessed by γ-H2AX phosphorylation. These effects were inhibited by a single amino acid substitution in the Nox4D NADPH-binding region. CONCLUSIONS: Nox4D is a nuclear-localized and functionally active splice variant of Nox4 that may have important pathophysiologic effects through modulation of nuclear signaling and DNA damage.


Asunto(s)
Núcleo Celular/enzimología , Fibroblastos/enzimología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Músculo Liso Vascular/enzimología , Miocitos Cardíacos/enzimología , Miocitos del Músculo Liso/enzimología , NADPH Oxidasas/metabolismo , Animales , Daño del ADN , Activación Enzimática , Técnica del Anticuerpo Fluorescente , Células HEK293 , Histonas/metabolismo , Humanos , Microscopía Confocal , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Peso Molecular , Mutagénesis Sitio-Dirigida , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Oxidación-Reducción , Fosforilación , Cultivo Primario de Células , Isoformas de Proteínas , Interferencia de ARN , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Transfección
11.
Circulation ; 126(8): 942-51, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22829024

RESUMEN

BACKGROUND: In the normal heart, phosphodiesterase type 5 (PDE5) hydrolyzes cGMP coupled to nitric oxide- (specifically from nitric oxide synthase 3) but not natriuretic peptide (NP)-stimulated guanylyl cyclase. PDE5 is upregulated in hypertrophied and failing hearts and is thought to contribute to their pathophysiology. Because nitric oxide signaling declines whereas NP-derived cGMP rises in such diseases, we hypothesized that PDE5 substrate selectivity is retargeted to blunt NP-derived signaling. METHODS AND RESULTS: Mice with cardiac myocyte inducible PDE5 overexpression (P5(+)) were crossed to those lacking nitric oxide synthase 3 (N3(-)), and each model, the double cross, and controls were subjected to transaortic constriction. P5(+) mice developed worse dysfunction and hypertrophy and enhanced NP stimulation, whereas N3(-) mice were protected. However, P5(+)/N3(-) mice behaved similarly to P5(+) mice despite the lack of nitric oxide synthase 3-coupled cGMP generation, with protein kinase G activity suppressed in both models. PDE5 inhibition did not alter atrial natriuretic peptide-stimulated cGMP in the resting heart but augmented it in the transaortic constriction heart. This functional retargeting was associated with PDE5 translocation from sarcomeres to a dispersed distribution. P5(+) hearts exhibited higher oxidative stress, whereas P5(+)/N3(-) hearts had low levels (likely owing to the absence of nitric oxide synthase 3 uncoupling). This highlights the importance of myocyte protein kinase G activity as a protection for pathological remodeling. CONCLUSIONS: These data provide the first evidence for functional retargeting of PDE5 from one compartment to another, revealing a role for natriuretic peptide-derived cGMP hydrolysis by this esterase in diseased heart myocardium. Retargeting likely affects the pathophysiological consequence and the therapeutic impact of PDE5 modulation in heart disease.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/fisiología , Animales , Cardiomegalia/patología , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/genética , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocardio/enzimología , Miocardio/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Óxido Nítrico Sintasa de Tipo III/genética , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Remodelación Ventricular/fisiología
12.
Proc Natl Acad Sci U S A ; 107(42): 18121-6, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20921387

RESUMEN

Cardiac failure occurs when the heart fails to adapt to chronic stresses. Reactive oxygen species (ROS)-dependent signaling is implicated in cardiac stress responses, but the role of different ROS sources remains unclear. Here we report that NADPH oxidase-4 (Nox4) facilitates cardiac adaptation to chronic stress. Unlike other Nox proteins, Nox4 activity is regulated mainly by its expression level, which increases in cardiomyocytes under stresses such as pressure overload or hypoxia. To investigate the functional role of Nox4 during the cardiac response to stress, we generated mice with a genetic deletion of Nox4 or a cardiomyocyte-targeted overexpression of Nox4. Basal cardiac function was normal in both models, but Nox4-null animals developed exaggerated contractile dysfunction, hypertrophy, and cardiac dilatation during exposure to chronic overload whereas Nox4-transgenic mice were protected. Investigation of mechanisms underlying this protective effect revealed a significant Nox4-dependent preservation of myocardial capillary density after pressure overload. Nox4 enhanced stress-induced activation of cardiomyocyte hypoxia inducible factor 1 and the release of vascular endothelial growth factor, resulting in increased paracrine angiogenic activity. These data indicate that cardiomyocyte Nox4 is a unique inducible regulator of myocardial angiogenesis, a key determinant of cardiac adaptation to overload stress. Our results also have wider relevance to the use of nonspecific antioxidant approaches in cardiac disease and may provide an explanation for the failure of such strategies in many settings.


Asunto(s)
Corazón/fisiopatología , NADPH Oxidasas/metabolismo , Neovascularización Fisiológica , Estrés Fisiológico , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Transgénicos , Miocardio/metabolismo , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Cardiovasc Res ; 118(17): 3305-3319, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35325070

RESUMEN

NADPH oxidases (NOXs), enzymes whose primary function is to generate reactive oxygen species, are important regulators of the heart's physiological function and response to pathological insults. The role of NOX-driven redox signalling in pathophysiological myocardial remodelling, including processes such as interstitial fibrosis, contractile dysfunction, cellular hypertrophy, and cell survival, is well recognized. While the NOX2 isoform promotes many detrimental effects, the NOX4 isoform has attracted considerable attention as a driver of adaptive stress responses both during pathology and under physiological states such as exercise. Recent studies have begun to define some of the NOX4-modulated mechanisms that may underlie these adaptive responses. In particular, novel functions of NOX4 in driving cellular metabolic changes have emerged. Alterations in cellular metabolism are a recognized hallmark of the heart's response to physiological and pathological stresses. In this review, we highlight the emerging roles of NOX enzymes as important modulators of cellular intermediary metabolism in the heart, linking stress responses not only to myocardial energetics but also other functions. The novel interplay of NOX-modulated redox signalling pathways and intermediary metabolism in the heart is unravelling a new aspect of the fascinating biology of these enzymes which will inform a better understanding of how they drive adaptive responses. We also discuss the implications of these new findings for therapeutic approaches that target metabolism in cardiac disease.


Asunto(s)
Miocardio , NADPH Oxidasas , NADPH Oxidasas/metabolismo , Miocardio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Corazón , Estrés Oxidativo , Isoformas de Proteínas/metabolismo , NADPH Oxidasa 4/metabolismo
14.
Nat Commun ; 14(1): 5552, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689702

RESUMEN

The microvasculature plays a key role in tissue perfusion and exchange of gases and metabolites. In this study we use human blood vessel organoids (BVOs) as a model of the microvasculature. BVOs fully recapitulate key features of the human microvasculature, including the reliance of mature endothelial cells on glycolytic metabolism, as concluded from metabolic flux assays and mass spectrometry-based metabolomics using stable tracing of 13C-glucose. Pharmacological targeting of PFKFB3, an activator of glycolysis, using two chemical inhibitors results in rapid BVO restructuring, vessel regression with reduced pericyte coverage. PFKFB3 mutant BVOs also display similar structural remodelling. Proteomic analysis of the BVO secretome reveal remodelling of the extracellular matrix and differential expression of paracrine mediators such as CTGF. Treatment with recombinant CTGF recovers microvessel structure. In this work we demonstrate that BVOs rapidly undergo restructuring in response to metabolic changes and identify CTGF as a critical paracrine regulator of microvascular integrity.


Asunto(s)
Células Endoteliales , Proteómica , Humanos , Bioensayo , Microvasos , Organoides , Monoéster Fosfórico Hidrolasas
15.
FEBS J ; 289(18): 5440-5462, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34496138

RESUMEN

Reactive oxygen species (ROS) are not just a by-product of cellular metabolic processes but act as signalling molecules that regulate both physiological and pathophysiological processes. A close connection exists in cells between redox homeostasis and cellular metabolism. In this review, we describe how intracellular redox state and glycolytic intermediary metabolism are closely coupled. On the one hand, ROS signalling can control glycolytic intermediary metabolism by direct regulation of the activity of key metabolic enzymes and indirect regulation via redox-sensitive transcription factors. On the other hand, metabolic adaptation and reprogramming in response to physiological or pathological stimuli regulate intracellular redox balance, through mechanisms such as the generation of reducing equivalents. We also discuss the impact of these intermediary metabolism-redox circuits in physiological and disease settings across different tissues. A better understanding of the mechanisms regulating these intermediary metabolism-redox circuits will be crucial to the development of novel therapeutic strategies.


Asunto(s)
Estrés Oxidativo , Transducción de Señal , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
16.
Elife ; 112022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36421765

RESUMEN

EROS (essential for reactive oxygen species) protein is indispensable for expression of gp91phox, the catalytic core of the phagocyte NADPH oxidase. EROS deficiency in humans is a novel cause of the severe immunodeficiency, chronic granulomatous disease, but its mechanism of action was unknown until now. We elucidate the role of EROS, showing it acts at the earliest stages of gp91phox maturation. It binds the immature 58 kDa gp91phox directly, preventing gp91phox degradation and allowing glycosylation via the oligosaccharyltransferase machinery and the incorporation of the heme prosthetic groups essential for catalysis. EROS also regulates the purine receptors P2X7 and P2X1 through direct interactions, and P2X7 is almost absent in EROS-deficient mouse and human primary cells. Accordingly, lack of murine EROS results in markedly abnormal P2X7 signalling, inflammasome activation, and T cell responses. The loss of both ROS and P2X7 signalling leads to resistance to influenza infection in mice. Our work identifies EROS as a highly selective chaperone for key proteins in innate and adaptive immunity and a rheostat for immunity to infection. It has profound implications for our understanding of immune physiology, ROS dysregulation, and possibly gene therapy.


Asunto(s)
Enfermedad Granulomatosa Crónica , NADPH Oxidasas , Humanos , Animales , Ratones , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fagocitos/metabolismo , Transducción de Señal/fisiología
17.
Exp Mol Pathol ; 90(1): 45-50, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20696152

RESUMEN

We focused on the effect of mild hyperhomocysteinemia (HHcy) on the development of atherosclerosis, using apolipoprotein E-deficient (apoE(-/-)) and normal mice. Mice received diets enriched in methionine with low or high levels of folate, B(12) and B(6) (diets B and C, respectively), and diet only with low levels of folate, B(12) and B(6) (diets D), to induce mild HHcy. Normal mice fed on diets B, C and D presented mild HHcy, but they did not develop atherosclerotic lesions after 24 weeks of diet. In addition, increased endoplasmic reticulum stress was present in normal mice fed on diet B, compared to others groups. ApoE(-/-) mice fed on diet B for 20 weeks presented the greatest atherosclerotic lesion area at the aortic sinus than other groups. These results suggest that the methionine may have a toxic effect on endothelium, and the B-vitamins addition on diet may have a protective effect in the long term, despite the increase on homocysteine levels. Mild HHcy accelerated the development of atherosclerosis in apoE(-/-) mice, and supplementation with B-vitamins is important for prevention of vascular disease, principally in the long term.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/complicaciones , Hiperhomocisteinemia/complicaciones , Animales , Apolipoproteínas E/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Dieta , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Ácido Fólico/farmacología , Hiperhomocisteinemia/inducido químicamente , Hiperhomocisteinemia/fisiopatología , Masculino , Metionina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Tiempo
18.
ScientificWorldJournal ; 11: 1749-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22125433

RESUMEN

Reactive oxygen species (ROS) production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals) functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i) pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation) and (ii) phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI) family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER) and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.


Asunto(s)
Interacciones Huésped-Patógeno , Proteína Disulfuro Isomerasas/metabolismo , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , NADPH Oxidasas/metabolismo , Oxidación-Reducción , Transporte de Proteínas
19.
Antioxidants (Basel) ; 9(2)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093119

RESUMEN

Obesity and diabetes are independent risk factors for cardiovascular diseases, and they are associated with the development of a specific cardiomyopathy with elevated myocardial oxygen consumption (MVO2) and impaired cardiac efficiency. Although the pathophysiology of this cardiomyopathy is multifactorial and complex, reactive oxygen species (ROS) may play an important role. One of the major ROS-generating enzymes in the cardiomyocytes is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), and many potential systemic activators of NOX2 are elevated in obesity and diabetes. We hypothesized that NOX2 activity would influence cardiac energetics and/or the progression of ventricular dysfunction following obesity. Myocardial ROS content and mechanoenergetics were measured in the hearts from diet-induced-obese wild type (DIOWT) and global NOK2 knock-out mice (DIOKO) and in diet-induced obese C57BL/6J mice given normal water (DIO) or water supplemented with the NOX2-inhibitor apocynin (DIOAPO). Mitochondrial function and ROS production were also assessed in DIO and DIOAPO mice. This study demonstrated that ablation and pharmacological inhibition of NOX2 both improved mechanical efficiency and reduced MVO2 for non-mechanical cardiac work. Mitochondrial ROS production was also reduced following NOX2 inhibition, while cardiac mitochondrial function was not markedly altered by apocynin-treatment. Therefore, these results indicate a link between obesity-induced myocardial oxygen wasting, NOX2 activation, and mitochondrial ROS.

20.
Antioxid Redox Signal ; 10(6): 1101-13, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18373437

RESUMEN

Vascular cell NADPH oxidase complexes are key sources of signaling reactive oxygen species (ROS) and contribute to disease pathophysiology. However, mechanisms that fine-tune oxidase-mediated ROS generation are incompletely understood. Besides known regulatory subunits, upstream mediators and scaffold platforms reportedly control and localize ROS generation. Some evidence suggest that thiol redox processes may coordinate oxidase regulation. We hypothesized that thiol oxidoreductases are involved in this process. We focused on protein disulfide isomerase (PDI), a ubiquitous dithiol disulfide oxidoreductase chaperone from the endoplasmic reticulum, given PDI's unique versatile role as oxidase/isomerase. PDI is also involved in protein traffic and can translocate to the cell surface, where it participates in cell adhesion and nitric oxide internalization. We recently provided evidence that PDI exerts functionally relevant regulation of NADPH oxidase activity in vascular smooth muscle and endothelial cells, in a thiol redox-dependent manner. Loss-of-function experiments indicate that PDI supports angiotensin II-mediated ROS generation and Akt phosphorylation. In addition, PDI displays confocal co-localization and co-immunoprecipitates with oxidase subunits, indicating close association. The mechanisms of such interaction are yet obscure, but may involve subunit assembling stabilization, assistance with traffic, and subunit disposal. These data may clarify an integrative view of oxidase activation in disease conditions, including stress responses.


Asunto(s)
Músculo Liso Vascular/enzimología , NADPH Oxidasas/metabolismo , Proteína Disulfuro Isomerasas/fisiología , Enfermedades Vasculares/etiología , Endotelio Vascular/enzimología , Humanos , Músculo Liso Vascular/citología , Oxidación-Reducción , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Transducción de Señal , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA