Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Evol Dev ; 26(3): e12475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555511

RESUMEN

Vertebrate pigmentation patterns are highly diverse, yet we have a limited understanding of how evolutionary changes to genetic, cellular, and developmental mechanisms generate variation. To address this, we examine the formation of a sexually-selected male ornament exhibiting inter- and intraspecific variation, the egg-spot pattern, consisting of circular yellow-orange markings on the male anal fins of haplochromine cichlid fishes. We focus on Astatotilapia calliptera, the ancestor-type species of the Malawi cichlid adaptive radiation of over 850 species. We identify a key role for iridophores in initializing egg-spot aggregations composed of iridophore-xanthophore associations. Despite adult sexual dimorphism, aggregations initially form in both males and females, with development only diverging between the sexes at later stages. Unexpectedly, we found that the timing of egg-spot initialization is plastic. The earlier individuals are socially isolated, the earlier the aggregations form, with iridophores being the cell type that responds to changes to the social environment. Furthermore, we observe apparent competitive interactions between adjacent egg-spot aggregations, which strongly suggests that egg-spot patterning results mostly from cell-autonomous cellular interactions. Together, these results demonstrate that A. calliptera egg-spot development is an exciting model for investigating pigment pattern formation at the cellular level in a system with developmental plasticity, sexual dimorphism, and intraspecific variation. As A. calliptera represents the ancestral bauplan for egg-spots, these findings provide a baseline for informed comparisons across the incredibly diverse Malawi cichlid radiation.


Asunto(s)
Cíclidos , Pigmentación , Animales , Cíclidos/crecimiento & desarrollo , Cíclidos/genética , Cíclidos/anatomía & histología , Masculino , Femenino , Caracteres Sexuales , Evolución Biológica
2.
Evol Dev ; 25(2): 170-193, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36748313

RESUMEN

The cichlid fishes comprise the largest extant vertebrate family and are the quintessential example of rapid "explosive" adaptive radiations and phenotypic diversification. Despite low genetic divergence, East African cichlids harbor a spectacular intra- and interspecific morphological diversity, including the hyper-variable, neural crest (NC)-derived traits such as coloration and craniofacial skeleton. Although the genetic and developmental basis of these phenotypes has been investigated, understanding of when, and specifically how early, in ontogeny species-specific differences emerge, remains limited. Since adult traits often originate during embryonic development, the processes of embryogenesis could serve as a potential source of species-specific variation. Consequently, we designed a staging system by which we compare the features of embryogenesis between three Malawi cichlid species-Astatotilapia calliptera, Tropheops sp. 'mauve' and Rhamphochromis sp. "chilingali"-representing a wide spectrum of variation in pigmentation and craniofacial morphologies. Our results showed fundamental differences in multiple aspects of embryogenesis that could underlie interspecific divergence in adult adaptive traits. First, we identified variation in the somite number and signatures of temporal variation, or heterochrony, in the rates of somite formation. The heterochrony was also evident within and between species throughout ontogeny, up to the juvenile stages. Finally, the identified interspecific differences in the development of pigmentation and craniofacial cartilages, present at the earliest stages of their overt formation, provide compelling evidence that the species-specific trajectories begin divergence during early embryogenesis, potentially during somitogenesis and NC development. Altogether, our results expand our understanding of fundamental cichlid biology and provide new insights into the developmental origins of vertebrate morphological diversity.


Asunto(s)
Cíclidos , Animales , Malaui , Cíclidos/genética , Fenotipo , Desarrollo Embrionario
3.
Proc Natl Acad Sci U S A ; 116(38): 19046-19054, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31484764

RESUMEN

Naturalists have been fascinated for centuries by animal colors and color patterns. While widely studied at the adult stage, we know little about color patterns in the embryo. Here, we study a trait consisting of coloration that is specific to the embryo and absent from postembryonic stages in water striders (Gerromorpha). By combining developmental genetics with chemical and phylogenetic analyses across a broad sample of species, we uncovered the mechanisms underlying the emergence and diversification of embryonic colors in this group of insects. We show that the pteridine biosynthesis pathway, which ancestrally produces red pigment in the eyes, has been recruited during embryogenesis in various extraocular tissues including antennae and legs. In addition, we discovered that this cooption is common to all water striders and initially resulted in the production of yellow extraocular color. Subsequently, 6 lineages evolved bright red color and 2 lineages lost the color independently. Despite the high diversity in colors and color patterns, we show that the underlying biosynthesis pathway remained stable throughout the 200 million years of Gerromorpha evolutionary time. Finally, we identified erythropterin and xanthopterin as the pigments responsible for these colors in the embryo of various species. These findings demonstrate how traits can emerge through the activation of a biosynthesis pathway in new developmental contexts.


Asunto(s)
Color , Embrión no Mamífero/metabolismo , Heterópteros/fisiología , Pigmentación/fisiología , Pigmentos Biológicos/metabolismo , Pteridinas/metabolismo , Transducción de Señal , Animales , Evolución Biológica , Embrión no Mamífero/citología , Ojo/citología , Ojo/metabolismo , Heterópteros/clasificación , Fenotipo , Filogenia
4.
Mol Biol Evol ; 37(10): 3076-3080, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442309

RESUMEN

We report on the first meeting of SMBE in Africa. SMBE Malawi was initiated to bring together African and international researchers who use genetics or genomics to study natural systems impacted by human activities. The goals of this conference were 1) to reach a world-class standard of science with a large number of contributions from Africa, 2) to initiate exchange between African and international researchers, and 3) to identify challenges and opportunities for evolutionary genomics research in Africa. As repored, we think that we have achieved these goals and make suggestions on the way forward for African evolutionary genomics research.


Asunto(s)
Evolución Biológica , Genómica , Animales , Humanos , Malaui
5.
Mol Ecol ; 26(10): 2605-2607, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28488810

RESUMEN

Understanding how phenotypic variation is generated and maintained, and the evolutionary forces that shape these processes is the main goal of evolutionary biology. Great progress has been made in uncovering the genetic basis of morphological diversity, yet little is known about both the genetics and developmental basis of discrete polymorphisms segregating in wild populations. Exploring variation in developmental mechanisms at the population level can address the long-standing question of whether the mechanisms of change are the same at the micro- and macroevolutionary scale. This integration has been difficult mainly because the study of the evolution of developmental mechanisms and population genetics remain separate (Genetics, 195, 625 and 2013). In this issue of Molecular Ecology, Roberts et al. (Molecular Ecology and 2017) make a significant contribution towards bridging this gap by studying the genetic and developmental basis of an extremely variable pigmentation pattern. A polymorphic blotched coloration is common among females of four genera of Lake Malawi cichlids. The presence of this phenotype associates with a noncoding SNP upstream of the transcription factor pax7a (Science, 326, 998 and 2009). The authors describe in detail the morphs' pigmentation development, showing that phenotypic differences result from alterations in pigment cell development and survival. Next, using controlled crosses and population genetics studies, they identified three putative pax7a dominant blotch alleles that are associated with specific morphs. These different alleles lead to higher levels of pax7a transcript that correlate with different pigment cell composition. Finally, sequence comparison of the locus within populations and between species revealed a common origin of the allele controlling the blotched morph followed by a pattern of sequential appearance of derived alleles that gave rise to morph diversity. The coupling of the evolutionary history of this allelic series with the developmental analysis of the phenotype paves the way for a mechanistic understanding of morphological innovation and diversification.


Asunto(s)
Cíclidos/genética , Alelos , Animales , Color , Femenino , Lagos , Malaui , Fenotipo , Pigmentación
6.
BMC Genomics ; 17: 712, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27600936

RESUMEN

BACKGROUND: Understanding the genetic basis of novel traits is a central topic in evolutionary biology. Two novel pigmentation phenotypes, egg-spots and blotches, emerged during the rapid diversification of East African cichlid fishes. Egg-spots are circular pigmentation markings on the anal fins of hundreds of derived haplochromine cichlids species, whereas blotches are patches of conspicuous anal fin pigmentation with ill-defined boundaries that occur in few species that belong to basal cichlid lineages. Both traits play an important role in the breeding behavior of this group of fishes. Knowledge about the origin, homology and underlying genetics of these pigmentation traits is sparse. RESULTS: Here, we present a comparative transcriptomic and differential gene expression analysis of egg-spots and blotches. We first conducted an RNA sequencing experiment where we compared egg-spot tissue with the remaining portion of egg-spot-free fin tissue using six individuals of Astatotilapia burtoni. We identified 1229 differentially expressed genes between the two tissue types. We then showed that rates of evolution of these genes are higher than average estimated on whole transcriptome data. Using quantitative real-time PCR, we found that 29 out of a subset of 46 differentially expressed genes showed an analogous expression pattern in another haplochromine species' egg-spots, Cynotilapia pulpican, strongly suggesting that these genes are involved in the egg-spot phenotype. Among these are the previously identified egg-spot gene fhl2a, two known patterning genes (hoxC12a and bmp3) as well as other pigmentation related genes such as asip. Finally, we analyzed the expression patterns of the same gene subset in two species that feature blotches instead of egg-spots, one haplochromine species (Pseudocrenilabrus philander) and one ectodine species (Callochromis macrops), revealing that the expression patterns in blotches and egg-spots are rather distinct. CONCLUSIONS: We identified several candidate genes that will serve as an important and useful resource for future research on the emergence and diversification of cichlid fishes' egg-spots. Only a limited degree of conservation of gene expression patterns was detected between the egg-spots of the derived haplochromines and blotches from ancestral haplochromines, as well as between the two types of blotches, suggesting an independent origin of these traits.


Asunto(s)
Cíclidos/genética , Proteínas de Peces/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Pigmentación de la Piel/genética , Canal Anal/fisiología , Aletas de Animales/fisiología , Animales , Evolución Molecular , Regulación de la Expresión Génica , Filogenia , Especificidad de la Especie
7.
bioRxiv ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38352436

RESUMEN

Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic programme in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to inter-specific morphological differences. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared to the teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes - particularly those controlled by sox10s - might be involved in generating morphological diversification between species and lays the groundwork for further investigations into mechanisms underpinning vertebrate NC diversification.

8.
BMC Ecol Evol ; 24(1): 24, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378480

RESUMEN

BACKGROUND: The mechanosensory lateral line system is an important sensory modality in fishes, informing multiple behaviours related to survival including finding food and navigating in dark environments. Given its ecological importance, we may expect lateral line morphology to be under disruptive selection early in the ecological speciation process. Here we quantify the lateral line system morphology of two ecomorphs of the cichlid fish Astatotilapia calliptera in crater Lake Masoko that have diverged from common ancestry within the past 1,000 years. RESULTS: Based on geometric morphometric analyses of CT scans, we show that the zooplanktivorous benthic ecomorph that dominates the deeper waters of the lake has large cranial lateral line canal pores, relative to those of the nearshore invertebrate-feeding littoral ecomorph found in the shallower waters. In contrast, fluorescence imaging revealed no evidence for divergence between ecomorphs in the number of either superficial or canal neuromasts. We illustrate the magnitude of the variation we observe in Lake Masoko A. calliptera in the context of the neighbouring Lake Malawi mega-radiation that comprises over 700 species. CONCLUSIONS: These results provide the first evidence of divergence in this often-overlooked sensory modality in the early stages of ecological speciation, suggesting that it may have a role in the broader adaptive radiation process.


Asunto(s)
Cíclidos , Sistema de la Línea Lateral , Animales , Cíclidos/genética , Cíclidos/anatomía & histología , Lagos , Análisis de Secuencia de ADN , Malaui
9.
Science ; 384(6694): 470-475, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662824

RESUMEN

Behavior is critical for animal survival and reproduction, and possibly for diversification and evolutionary radiation. However, the genetics behind adaptive variation in behavior are poorly understood. In this work, we examined a fundamental and widespread behavioral trait, exploratory behavior, in one of the largest adaptive radiations on Earth, the cichlid fishes of Lake Tanganyika. By integrating quantitative behavioral data from 57 cichlid species (702 wild-caught individuals) with high-resolution ecomorphological and genomic information, we show that exploratory behavior is linked to macrohabitat niche adaptations in Tanganyikan cichlids. Furthermore, we uncovered a correlation between the genotypes at a single-nucleotide polymorphism upstream of the AMPA glutamate-receptor regulatory gene cacng5b and variation in exploratory tendency. We validated this association using behavioral predictions with a neural network approach and CRISPR-Cas9 genome editing.


Asunto(s)
Adaptación Fisiológica , Conducta Animal , Cíclidos , Conducta Exploratoria , Receptores AMPA , Animales , Adaptación Fisiológica/genética , Cíclidos/genética , Cíclidos/fisiología , Sistemas CRISPR-Cas , Ecosistema , Edición Génica , Genotipo , Lagos , Polimorfismo de Nucleótido Simple , Receptores AMPA/genética
10.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617250

RESUMEN

East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.

11.
Mol Ecol ; 22(3): 670-84, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23050496

RESUMEN

The evolution of convergent phenotypes is one of the most interesting outcomes of replicate adaptive radiations. Remarkable cases of convergence involve the thick-lipped phenotype found across cichlid species flocks in the East African Great Lakes. Unlike most other convergent forms in cichlids, which are restricted to East Africa, the thick-lipped phenotype also occurs elsewhere, for example in the Central American Midas Cichlid assemblage. Here, we use an ecological genomic approach to study the function, the evolution and the genetic basis of this phenotype in two independent cichlid adaptive radiations on two continents. We applied phylogenetic, demographic, geometric morphometric and stomach content analyses to an African (Lobochilotes labiatus) and a Central American (Amphilophus labiatus) thick-lipped species. We found that similar morphological adaptations occur in both thick-lipped species and that the 'fleshy' lips are associated with hard-shelled prey in the form of molluscs and invertebrates. We then used comparative Illumina RNA sequencing of thick vs. normal lip tissue in East African cichlids and identified a set of 141 candidate genes that appear to be involved in the morphogenesis of this trait. A more detailed analysis of six of these genes led to three strong candidates: Actb, Cldn7 and Copb. The function of these genes can be linked to the loose connective tissue constituting the fleshy lips. Similar trends in gene expression between African and Central American thick-lipped species appear to indicate that an overlapping set of genes was independently recruited to build this particular phenotype in both lineages.


Asunto(s)
Evolución Biológica , Cíclidos/anatomía & histología , Cíclidos/genética , Adaptación Biológica/genética , África Oriental , Animales , América Central , Contenido Digestivo , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ARN , Transcriptoma
12.
Evodevo ; 14(1): 1, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604760

RESUMEN

Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.

13.
Biol Rev Camb Philos Soc ; 98(4): 1250-1277, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37017088

RESUMEN

Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.


Asunto(s)
Sitios Genéticos , Vertebrados , Animales , Vertebrados/genética , Mutación , Pigmentación/genética , Fenotipo
14.
Open Biol ; 13(11): 230257, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38018094

RESUMEN

African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids. Genome editing technologies are well established in teleost models like zebrafish and medaka. However, this is not the case for emerging model organisms, such as East African cichlids, where these technologies remain inaccessible to most laboratories, due in part to limited exchange of knowledge and expertise. The Cichlid Science 2022 meeting (Cambridge, UK) hosted for the first time a Genome Editing Workshop, where the community discussed recent advances in genome editing, with an emphasis on CRISPR/Cas9 technologies. Based on the workshop findings and discussions, in this review we define the state-of-the-art of cichlid genome editing, share resources and protocols, and propose new possible avenues to further expand the cichlid genome editing toolkit.


Asunto(s)
Cíclidos , Tilapia , Animales , Cíclidos/genética , Edición Génica , Filogenia , Tilapia/genética , África Oriental
15.
Mol Biol Evol ; 28(1): 237-47, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20651048

RESUMEN

The FoxP gene subfamily of transcription factors is defined by its characteristic 110 amino acid long DNA-binding forkhead domain and plays essential roles in vertebrate biology. Its four members, FoxP1-P4, have been extensively characterized functionally. FoxP1, FoxP2, and FoxP4 are involved in lung, heart, gut, and central nervous system (CNS) development. FoxP3 is necessary and sufficient for the specification of regulatory T cells (Tregs) of the adaptive immune system. In Drosophila melanogaster, in silico predictions identify one unique FoxP subfamily gene member (CG16899) with no described function. We characterized this gene and established that it generates by alternative splicing two isoforms that differ in the forkhead DNA-binding domain. In D. melanogaster, both isoforms are expressed in the embryonic CNS, but in hemocytes, only isoform A is expressed, hinting to a putative modulation through alternative splicing of FoxP1 function in immunity and/or other hemocyte-dependent processes. Furthermore, we show that in vertebrates, this novel alternative splicing pattern is conserved for FoxP1. In mice, this new FoxP1 isoform is expressed in brain, liver, heart, testes, thymus, and macrophages (equivalent in function to hemocytes). This alternative splicing pattern has arisen at the base of the Bilateria, probably through exon tandem duplication. Moreover, our phylogenetic analysis suggests that in vertebrates, FoxP1 is more related to the FoxP gene ancestral form and the other three paralogues, originated through serial duplications, which only retained one of the alternative exons. Also, the newly described isoform differs from the other in amino acids critical for DNA-binding specificity. The integrity of its fold is maintained, but the molecule has lost the direct hydrogen bonding to DNA bases leading to a putatively lower specificity and possibly affinity toward DNA. With the present comparative study, through the integration of experimental and in silico studies of the FoxP gene subfamily across the animal kingdom, we establish a new model for the FoxP gene in invertebrates and for the vertebrate FoxP1 paralogue. Furthermore, we present a scenario for the structural evolution of this gene class and reveal new previously unsuspected levels of regulation for FoxP1 in the vertebrate system.


Asunto(s)
Empalme Alternativo , Proteínas de Drosophila/genética , Evolución Molecular , Factores de Transcripción Forkhead/genética , Duplicación de Gen , Isoformas de Proteínas/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/clasificación , Drosophila melanogaster/genética , Exones , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/clasificación , Hemocitos/fisiología , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/clasificación , Proteínas Represoras/química , Proteínas Represoras/clasificación , Alineación de Secuencia
16.
R Soc Open Sci ; 9(4): 220077, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35601449

RESUMEN

Identifying genetic loci underlying trait variation provides insights into the mechanisms of diversification, but demonstrating causality and characterizing the role of genetic loci requires testing candidate gene function, often in non-model species. Here we establish CRISPR/Cas9 editing in Astatotilapia calliptera, a generalist cichlid of the remarkably diverse Lake Malawi radiation. By targeting the gene oca2 required for melanin synthesis in other vertebrate species, we show efficient editing and germline transmission. Gene edits include indels in the coding region, probably a result of non-homologous end joining, and a large deletion in the 3' untranslated region due to homology-directed repair. We find that oca2 knock-out A. calliptera lack melanin, which may be useful for developmental imaging in embryos and studying colour pattern formation in adults. As A. calliptera resembles the presumed generalist ancestor of the Lake Malawi cichlids radiation, establishing genome editing in this species will facilitate investigating speciation, adaptation and trait diversification in this textbook radiation.

17.
Nat Ecol Evol ; 6(12): 1940-1951, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36266459

RESUMEN

Epigenetic variation can alter transcription and promote phenotypic divergence between populations facing different environmental challenges. Here, we assess the epigenetic basis of diversification during the early stages of speciation. Specifically, we focus on the extent and functional relevance of DNA methylome divergence in the very young radiation of Astatotilapia calliptera in crater Lake Masoko, southern Tanzania. Our study focuses on two lake ecomorphs that diverged approximately 1,000 years ago and a population in the nearby river from which they separated approximately 10,000 years ago. The two lake ecomorphs show no fixed genetic differentiation, yet are characterized by different morphologies, depth preferences and diets. We report extensive genome-wide methylome divergence between the two lake ecomorphs, and between the lake and river populations, linked to key biological processes and associated with altered transcriptional activity of ecologically relevant genes. Such genes differing between lake ecomorphs include those involved in steroid metabolism, hemoglobin composition and erythropoiesis, consistent with their divergent habitat occupancy. Using a common-garden experiment, we found that global methylation profiles are often rapidly remodeled across generations but ecomorph-specific differences can be inherited. Collectively, our study suggests an epigenetic contribution to the early stages of vertebrate speciation.


Asunto(s)
Cíclidos , Lagos , Animales , Evolución Biológica , Cíclidos/genética , Ecosistema , Epigénesis Genética
18.
Nat Commun ; 12(1): 5870, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620871

RESUMEN

Epigenetic variation modulates gene expression and can be heritable. However, knowledge of the contribution of epigenetic divergence to adaptive diversification in nature remains limited. The massive evolutionary radiation of Lake Malawi cichlid fishes displaying extensive phenotypic diversity despite extremely low sequence divergence is an excellent system to study the epigenomic contribution to adaptation. Here, we present a comparative genome-wide methylome and transcriptome study, focussing on liver and muscle tissues in phenotypically divergent cichlid species. In both tissues we find substantial methylome divergence among species. Differentially methylated regions (DMR), enriched in evolutionary young transposons, are associated with transcription changes of ecologically-relevant genes related to energy expenditure and lipid metabolism, pointing to a link between dietary ecology and methylome divergence. Unexpectedly, half of all species-specific DMRs are shared across tissues and are enriched in developmental genes, likely reflecting distinct epigenetic developmental programmes. Our study reveals substantial methylome divergence in closely-related cichlid fishes and represents a resource to study the role of epigenetics in species diversification.


Asunto(s)
Mapeo Cromosómico , Cíclidos/genética , Epigénesis Genética , Evolución Molecular , Animales , Elementos Transponibles de ADN , Epigenoma , Expresión Génica , Genómica , Lagos , Hígado , Malaui , Análisis de Secuencia de ADN , Especificidad de la Especie
19.
Child Neuropsychol ; 13(4): 319-32, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17564849

RESUMEN

Reduced speech fluency is frequent in clinical paediatric populations, an unexplained finding. To investigate age related effects on speech fluency variables, we analysed samples of narrative speech (picture description) of 308 healthy children, aged 5 to 17 years, and studied its relation with verbal fluency tasks. All studied measures showed significant developmental effects. Speech rate and verbal fluency scores increased, while pauses, repetitions and locution time declined with age. Speech rate correlated with semantic fluency tasks suggesting that it also depends upon the efficacy of lexical retrieval. These results indicate that the interpretation of disorders of speech fluency in childhood must incorporate age appropriate norms.


Asunto(s)
Desarrollo del Lenguaje , Habla/fisiología , Conducta Verbal/fisiología , Adolescente , Desarrollo del Adolescente/fisiología , Factores de Edad , Análisis de Varianza , Niño , Desarrollo Infantil/fisiología , Femenino , Humanos , Masculino , Recuerdo Mental/fisiología , Fonética , Valores de Referencia , Semántica , Factores Sexuales , Factores Socioeconómicos , Medición de la Producción del Habla/métodos , Análisis y Desempeño de Tareas , Factores de Tiempo
20.
Science ; 358(6361): 386-390, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29051384

RESUMEN

Taxon-restricted genes make up a considerable proportion of genomes, yet their contribution to phenotypic evolution is poorly understood. We combined gene expression with functional and behavioral assays to study the origin and adaptive value of an evolutionary innovation exclusive to the water strider genus Rhagovelia: the propelling fan. We discovered that two taxon-restricted genes, which we named geisha and mother-of-geisha, specifically control fan development. geisha originated through a duplication event at the base of the Rhagovelia lineage, and both duplicates acquired a novel expression in a specific cell population prefiguring fan development. These gene duplicates played a central role in Rhagovelia's adaptation to a new physical environment, demonstrating that the evolution of taxon-restricted genes can contribute directly to evolutionary novelties that allow access to unexploited ecological niches.


Asunto(s)
Adaptación Biológica/genética , Evolución Molecular , Interacción Gen-Ambiente , Genes de Insecto , Heterópteros/genética , Animales , Heterópteros/anatomía & histología , Heterópteros/clasificación , Heterópteros/crecimiento & desarrollo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA