Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 66: 92-103, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24607884

RESUMEN

In Krabbe's disease (KD), a leukodystrophy caused by ß-galactosylceramidase deficiency, demyelination and a myelin-independent axonopathy contributes to the severe neuropathology. Beyond axonopathy, we show that in Twitcher mice, a model of KD, a decreased number of axons both in the PNS and in the CNS, and of neurons in dorsal root ganglia (DRG), occurred before the onset of demyelination. Despite the early axonal loss, and although in vitro Twitcher neurites degenerated over time, Twitcher DRG neurons displayed an initial neurite overgrowth and, following sciatic nerve injury, Twitcher axons were regeneration-competent, at a time point where axonopathy was already ongoing. Psychosine, the toxic substrate that accumulates in KD, induced lipid raft clustering. At the mechanistic level, TrkA recruitment to lipid rafts was dysregulated in Twitcher neurons, and defective activation of the ERK1/2 and AKT pathways was identified. Besides defective recruitment of signaling molecules to lipid rafts, the early steps of endocytosis and the transport of endocytic and synaptic vesicles were impaired in Twitcher DRG neurons. Defects in axonal transport, specifically in the retrograde component, correlated with decreased levels of dynein, abnormal levels of post-translational tubulin modifications and decreased microtubule stability. The identification of the axonal defects that precede demyelination in KD, together with the finding that Twitcher axons are regeneration-competent when axonopathy is already installed, opens new windows of action to effectively correct the neuropathology that characterizes this disorder.


Asunto(s)
Transporte Axonal/fisiología , Axones/fisiología , Endocitosis/fisiología , Leucodistrofia de Células Globoides/fisiopatología , Microtúbulos/metabolismo , Animales , Axones/patología , Células Cultivadas , Modelos Animales de Enfermedad , Dineínas/metabolismo , Femenino , Ganglios Espinales/patología , Ganglios Espinales/fisiopatología , Leucodistrofia de Células Globoides/patología , Masculino , Microdominios de Membrana/patología , Microdominios de Membrana/fisiología , Ratones , Ratones Mutantes Neurológicos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Neuritas/patología , Neuritas/fisiología , Neuronas/patología , Neuronas/fisiología , Nervio Ciático/lesiones , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Vesículas Sinápticas/patología , Vesículas Sinápticas/fisiología , Vesículas Transportadoras/patología , Vesículas Transportadoras/fisiología , Tubulina (Proteína)/metabolismo
2.
Cell Transplant ; 23(2): 239-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23809254

RESUMEN

Krabbe's disease (KD) is a demyelinating disorder caused by the deficiency of lysosomal galactocerebrosidase (GALC), affecting both the central (CNS) and the peripheral nervous system (PNS). A current therapy, hematopoietic stem cell transplantation (HSCT), is ineffective at correcting the PNS pathology. We have previously shown that systemic delivery of immortalized bone marrow-derived murine mesenchymal stromal cells (BM-MSCs) diminishes the neuropathology of transplanted Twitcher mice, a murine model of KD. In this study, to move one step closer to clinical application, the effectiveness of a systematic delivery of primary BM-MSCs to promote recovery of the Twitcher PNS was assessed. Primary BM-MSCs grafted to the Twitcher sciatic nerve led to increased GALC activity that was not correlated to decreased psychosine (the toxic GALC substrate) accumulation. Nevertheless, BM-MSC transplantation rescued the axonal phenotype of Twitcher mice in the sciatic nerve, with an increased density of both myelinated and unmyelinated axons in transplanted animals. Whereas no increase in myelination was observed, upon transplantation an increased proliferation of Schwann cell precursors occurred. Supporting these findings, in vitro, BM-MSCs promoted neurite outgrowth of Twitcher sensory neurons and proliferation of Twitcher Schwann cells. Moreover, BM-MSCs expressed nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and promoted increased BDNF synthesis by neighboring Schwann cells. Besides their action in neurons and glia, BM-MSCs led to macrophage activation in Twitcher sciatic nerves. In summary, primary BM-MSCs diminish the neuropathology of Twitcher sciatic nerves by coordinately affecting neurons, glia, and macrophages.


Asunto(s)
Células Madre Mesenquimatosas/citología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones Transgénicos , Factor de Crecimiento Nervioso/metabolismo , Psicosina/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA