RESUMEN
The skeleton of zebrafish fins consists of lepidotrichia and actinotrichia. Actinotrichia are fibrils located at the tip of each lepidotrichia and play a morphogenetic role in fin formation. Actinotrichia are formed by collagens associated with non-collagen components. The non-collagen components of actinotrichia (actinodins) have been shown to play a critical role in fin to limb transition. The present study has focused on the collagens that form actinotrichia and their role in fin formation. We have found actinotrichia are formed by Collagen I plus a novel form of Collagen II, encoded by the col2a1b gene. This second copy of the collagen II gene is only found in fishes and is the only Collagen type II expressed in fins. Both col1a1a and col2a1b were found in actinotrichia forming cells. Significantly, they also expressed the lysyl hydroxylase 1 (lh1) gene, which encodes an enzyme involved in the post-translational processing of collagens. Morpholino knockdown in zebrafish embryos demonstrated that the two collagens and lh1 are essential for actinotrichia and fin fold morphogenesis. The col1a1 dominant mutant chihuahua showed aberrant phenotypes in both actinotrichia and lepidotrichia during fin development and regeneration. These pieces of evidences support that actinotrichia are composed of Collagens I and II, which are post-translationally processed by Lh1, and that the correct expression and assembling of these collagens is essential for fin formation. The unique collagen composition of actinotrichia may play a role in fin skeleton morphogenesis.
Asunto(s)
Aletas de Animales/metabolismo , Colágeno Tipo II/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/metabolismo , Aletas de Animales/embriología , Animales , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Morfogénesis/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
The osteogenic and angiogenic responses to metal macroporous scaffolds coated with silicon substituted hydroxyapatite (SiHA) and decorated with vascular endothelial growth factor (VEGF) have been evaluated in vitro and in vivo. Ti6Al4V-ELI scaffolds were prepared by electron beam melting and subsequently coated with Ca10(PO4)5.6(SiO4)0.4(OH)1.6 following a dip coating method. In vitro studies demonstrated that SiHA stimulates the proliferation of MC3T3-E1 pre-osteoblastic cells, whereas the adsorption of VEGF stimulates the proliferation of EC2 mature endothelial cells. In vivo studies were carried out in an osteoporotic sheep model, evidencing that only the simultaneous presence of both components led to a significant increase of new tissue formation in osteoporotic bone. STATEMENT OF SIGNIFICANCE: Reconstruction of bones after severe trauma or tumors extirpation is one of the most challenging tasks in the field of orthopedic surgery. This scenario is even more complicated in the case of osteoporotic patients, since their bone regeneration capability is decreased. In this work we present a porous implant that promotes bone regeneration even in osteoporotic bone. By coating the implant with osteogenic bioceramics such as silicon substituted hydroxyapatite and subsequent adsorption of vascular endothelial growth factor, these implants stimulate the bone ingrowth when they are implanted in osteoporotic sheep.
Asunto(s)
Regeneración Ósea/efectos de los fármacos , Durapatita , Osteoporosis , Silicio , Titanio , Factor A de Crecimiento Endotelial Vascular , Aleaciones , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/patología , Ovinos , Silicio/química , Silicio/farmacología , Porcinos , Titanio/química , Titanio/farmacología , Factor A de Crecimiento Endotelial Vascular/química , Factor A de Crecimiento Endotelial Vascular/farmacologíaRESUMEN
Unlike mammals, adult urodele amphibians can regenerate their spinal cord and associated ganglia, but the molecular mechanisms controlling regeneration are not fully understood. We have recently shown that expression of FGF2, a member of the fibroblast growth factor family, is induced in the progenitor cells of the regenerating spinal cord and appears to play a role in their proliferation and possibly in their differentiation. In order to investigate which receptor(s) may mediate FGF2 signaling and their role in regeneration, we have studied expression of the four fibroblast growth factor receptors, FGFR1, FGFR2, FGFR3 and FGFR4, and of the spliced variants, sFGFR and KGFR, in the regenerating spinal cord of the adult urodele, Pleurodeles waltl, following tail amputation. We show that all FGFRs are expressed in normal and regenerating spinal cord, with the exception of the spliced variants that are expressed only in non-neural tissues of the tail. FGFR1 and 4 show the more interesting spatio-temporal patterns of expression. They are not detectable in the ependymal cells of normal cords, from which neural progenitors for regeneration are believed to originate, though they are expressed in some mature neurons. During regeneration, significant up-regulation of FGFR1 precedes that of FGFR4 in the ependymal tube from which the new cord will form. FGFR4 is highly expressed in these cells at later stages of regeneration, when neuronal differentiation is becoming apparent, and like FGFR1 is also expressed in some newborn neurons. In addition to the known form of FGFR1, the antibody against this receptor reacts also with a non-phosphorylated protein that appears to be present only during regeneration, and might represent a yet undescribed variant of the receptor. Altogether this study shows that fibroblast growth factor signaling is finely modulated during tail and spinal cord regeneration, and points to FGFR1 and FGFR4 as key players in this process, suggesting that FGFR1 is primarily associated with proliferation of progenitor cells and FGFR4 with early stages of neuronal differentiation.
Asunto(s)
Regeneración Nerviosa/fisiología , Proteínas Tirosina Quinasas , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Médula Espinal/fisiología , Animales , Expresión Génica/fisiología , Pleurodeles , ARN Mensajero/análisis , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos , Cola (estructura animal)/inervación , Regulación hacia Arriba/fisiologíaRESUMEN
The cranial bone has a very limited regenerative capability. Patients with craniosynostosis (the premature fusion of cranial sutures, leading to skull abnormalities) often require extensive craniofacial reconstruction and repeated surgery. The possibility of grafting autologous osteoprogenitor cells seeded on bioabsorbable matrices is of great potential for inducing regeneration of craniofacial structure and protecting the brain from external insult. To this purpose we have studied the behaviour of normal and craniosynostotic mouse osteoblast cell lines, and of human primary osteoprogenitors from craniosynostotic patients. We have monitored their ability to grow and differentiate on plastic and on a scaffold composed of bioactive glass and bioabsorbable polymer by live fluorescent labelling and expression of bone differentiation markers. Cells from syndromic patients display a behaviour very similar to that observed in the stable mouse cell line we generated by introducing the human FGFR2-C278F, a mutation found in certain craniosynostosis, into MC3T3 osteblastic cells, indicating that the mutated cell line is a valuable model for studying the cellular response of human craniosynostotic osteoblasts. Both normal and mutated calvarial osteoprogenitors can attach to the bioactive scaffold, although mutated cells display adhesion defects when cultured on plastic. Furthermore, analysis of bone differentiation markers in human osteoblasts shows that the composite mesh, unlike PLGA(80) plates, supports bone differentiation. The ability of the mesh to support homing and differentiation in both normal and mutant osteoprogenitors is important, in view of further developing autologous biohybrids to repair cranial bone deficits also in craniosynostotic patients undergoing extensive reconstructive surgery.
Asunto(s)
Materiales Biocompatibles/metabolismo , Huesos/citología , Craneosinostosis/patología , Osteoblastos/citología , Células Madre/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Línea Celular , Humanos , Ratones , Cráneo/citologíaRESUMEN
We have investigated the pattern of incorporation of 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU) by proliferating cells during regeneration of the tail fin of Carassius auratus. Fifteen days after amputation, intraperitoneal injection of a single dose of 0.25 mg/g wet weight of BrdU and subsequent immunocytochemical detection on sections revealed groups of replicating cells in the blastema and epidermis at different proximodistal levels. Proliferating blastemal cells were confined to a crowded, compact distal area that lost its replicative capacity laterally, causing the differentiation of scleroblasts, which synthesize the lepidotrichia hemisegments. Proximally, but centrally located, the blastemal cells did not incorporate BrdU and they differentiated giving rise to the mature intraray connective tissue. An independent cell-proliferation process was noted in the epidermis. The distal cap did not proliferate; the lateral faces of the epidermis showed high rates of cell replication in the central layer at every level of the regenerate rays; quiescent cells remained in the superficial layers. The basal epidermal cells did not incorporate BrdU when actinotrichia were present. The possible role of basal epidermal cells in the synthesis of actinotrichia, the contribution of these collagen macrofibrils to the morphogenetic process, and the different pathways of cell differentiation during fin regeneration are discussed.