Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 37(9): 2292-2304, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28137966

RESUMEN

In chronic pain, the medial prefrontal cortex (mPFC) is deactivated and mPFC-dependent tasks such as attention and working memory are impaired. We investigated the mechanisms of mPFC deactivation in the rat spared nerve injury (SNI) model of neuropathic pain. Patch-clamp recordings in acute slices showed that, 1 week after the nerve injury, cholinergic modulation of layer 5 (L5) pyramidal neurons was severely impaired. In cells from sham-operated animals, focal application of acetylcholine induced a left shift of the input/output curve and persistent firing. Both of these effects were almost completely abolished in cells from SNI-operated rats. The cause of this impairment was an ∼60% reduction of an M1-coupled, pirenzepine-sensitive depolarizing current, which appeared to be, at least in part, the consequence of M1 receptor internalization. Although no changes were detected in total M1 protein or transcript, both the fraction of the M1 receptor in the synaptic plasma membrane and the biotinylated M1 protein associated with the total plasma membrane were decreased in L5 mPFC of SNI rats. The loss of excitatory cholinergic modulation may play a critical role in mPFC deactivation in neuropathic pain and underlie the mPFC-specific cognitive deficits that are comorbid with neuropathic pain.SIGNIFICANCE STATEMENT The medial prefrontal cortex (mPFC) undergoes major reorganization in chronic pain. Deactivation of mPFC output is causally correlated with both the cognitive and the sensory component of neuropathic pain. Here, we show that cholinergic excitation of commissural layer 5 mPFC pyramidal neurons is abolished in neuropathic pain rats due to a severe reduction of a muscarinic depolarizing current and M1 receptor internalization. Therefore, in neuropathic pain rats, the acetylcholine (ACh)-dependent increase in neuronal excitability is reduced dramatically and the ACh-induced persisting firing, which is critical for working memory, is abolished. We propose that the blunted cholinergic excitability contributes to the functional mPFC deactivation that is causal for the pain phenotype and represents a cellular mechanism for the attention and memory impairments comorbid with chronic pain.


Asunto(s)
Acetilcolina/metabolismo , Umbral del Dolor/fisiología , Corteza Prefrontal/metabolismo , Receptor Muscarínico M1/metabolismo , Ciática/patología , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hiperalgesia/fisiopatología , Masculino , Picrotoxina/farmacología , Corteza Prefrontal/patología , Corteza Prefrontal/ultraestructura , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M1/genética , Ciática/fisiopatología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/patología , Transmisión Sináptica/efectos de los fármacos , Valina/análogos & derivados , Valina/farmacología
2.
J Neurosci ; 37(15): 4093-4102, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28283559

RESUMEN

NMDA receptors (NMDARs) are ionotropic glutamate receptors that are crucial for neuronal development and higher cognitive processes. NMDAR dysfunction is involved in a variety of neurological and psychiatric diseases; however, the mechanistic link between the human pathology and NMDAR dysfunction is poorly understood. Rare missense variants within NMDAR subunits have been identified in numerous patients with mental or neurological disorders. We specifically focused on the GluN2B NMDAR subunit, which is highly expressed in the hippocampus and cortex throughout development. We analyzed several variants located in the GluN2B C terminus and found that three variants in patients with autism (S1415L) or schizophrenia (L1424F and S1452F) (S1413L, L1422F, and S1450F in rodents, respectively) displayed impaired binding to membrane-associated guanylate kinase (MAGUK) proteins. In addition, we observed a deficit in surface expression for GluN2B S1413L. Furthermore, there were fewer dendritic spines in GluN2B S1413L-expressing neurons. Importantly, synaptic NMDAR currents in neurons transfected with GluN2B S1413L in GluN2A/B-deficient mouse brain slices revealed only partial rescue of synaptic current amplitude. Functional properties of GluN2B S1413L in recombinant systems revealed no change in receptor properties, consistent with synaptic defects being the result of reduced trafficking and targeting of GluN2B S1413L to the synapse. Therefore, we find that GluN2B S1413L displays deficits in NMDAR trafficking, synaptic currents, and spine density, raising the possibility that this mutation may contribute to the phenotype in this autism patient. More broadly, our research demonstrates that the targeted study of certain residues in NMDARs based on rare variants identified in patients is a powerful approach to studying receptor function.SIGNIFICANCE STATEMENT We have used a "bedside-to-bench" approach to investigate the functional regulation of NMDA receptors (NMDARs). Using information from deep sequencing of patients with neurological or psychiatric disorders, we investigated missense variants identified in the intracellular C-terminal domain of the GluN2B NMDAR subunit. We found several variants that displayed altered properties. In particular, one variant identified in a patient with autism, human GluN2B S1415L, displayed reduced surface expression and binding to PSD-95. Furthermore expression of GluN2B S1415L (S1413L in mouse) showed a deficit in rescue of synaptic NMDAR currents and fewer dendritic spines, consistent with other reports of spine abnormalities being associated with autism. More broadly, we demonstrate that using patient data is an effective approach to probing the structure/function relationship of NMDARs.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Variación Genética/genética , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo
3.
J Biol Chem ; 290(48): 28596-603, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26453298

RESUMEN

Many molecular mechanisms underlie the changes in synaptic glutamate receptor content that are required by neuronal networks to generate cellular correlates of learning and memory. During the last decade, posttranslational modifications have emerged as critical regulators of synaptic transmission and plasticity. Notably, phosphorylation, ubiquitination, and palmitoylation control the stability, trafficking, and synaptic expression of glutamate receptors in the central nervous system. In the current review, we will summarize some of the progress made by the neuroscience community regarding our understanding of phosphorylation, ubiquitination, and palmitoylation of the NMDA and AMPA subtypes of glutamate receptors.


Asunto(s)
Lipoilación/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitinación/fisiología , Animales , Humanos , Fosforilación/fisiología , Transporte de Proteínas/fisiología
4.
J Neurosci ; 31(1): 89-96, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21209193

RESUMEN

Membrane-associated guanylate kinases (MAGUKs) are major components of the postsynaptic density and play important roles in synaptic organization and plasticity. Most excitatory synapses are located on dendritic spines, which are dynamic structures that undergo morphological changes during synapse formation and plasticity. Synapse-associated protein 102 (SAP102) is a MAGUK that is highly expressed early in development and mediates receptor trafficking during synaptogenesis. Mutations in human SAP102 cause mental retardation, which is often accompanied with abnormalities in dendritic spines. However, little is known about the role of SAP102 in regulating synapse formation or spine morphology. We now find that SAP102 contains a novel NMDA receptor binding site in the N-terminal domain, which is specific for the NR2B subunit. The interaction between SAP102 and NR2B is PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain independent and is regulated by alternative splicing of SAP102. We show that SAP102 that possesses an N-terminal insert is developmentally regulated at both mRNA and protein levels. In addition, expression of SAP102 increases synapse formation. Furthermore, the alternative splicing of SAP102 regulates dendritic spine morphology. SAP102 containing the N-terminal insert promotes lengthening of dendritic spines and preferentially promotes the formation of synapses at long spines, whereas a short hairpin RNA knockdown of the same SAP102 splice variant causes spine shrinkage. Finally, blocking NMDA receptor activity prevents the spine lengthening induced by the N-terminal splice variant of SAP102. Thus, our data provide the first evidence that SAP102 links NMDA receptor activation to alterations in spine morphology.


Asunto(s)
Espinas Dendríticas/genética , Neuronas/ultraestructura , Neuropéptidos/genética , Densidad Postsináptica/genética , Isoformas de Proteínas/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Análisis de Varianza , Animales , Células Cultivadas , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Humanos , Técnicas In Vitro , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Densidad Postsináptica/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , ARN Interferente Pequeño/metabolismo , Ratas , Receptores de N-Metil-D-Aspartato/genética , Transfección/métodos , Técnicas del Sistema de Dos Híbridos , Valina/análogos & derivados , Valina/farmacología
5.
Neuron ; 110(4): 627-643.e9, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34921780

RESUMEN

Although many neuronal membrane proteins undergo proteolytic cleavage, little is known about the biological significance of neuronal ectodomain shedding (ES). Here, we show that the neuronal sheddome is detectable in human cerebrospinal fluid (hCSF) and is enriched in neurodevelopmental disorder (NDD) risk factors. Among shed synaptic proteins is the ectodomain of CNTNAP2 (CNTNAP2-ecto), a prominent NDD risk factor. CNTNAP2 undergoes activity-dependent ES via MMP9 (matrix metalloprotease 9), and CNTNAP2-ecto levels are reduced in the hCSF of individuals with autism spectrum disorder. Using mass spectrometry, we identified the plasma membrane Ca2+ ATPase (PMCA) extrusion pumps as novel CNTNAP2-ecto binding partners. CNTNAP2-ecto enhances the activity of PMCA2 and regulates neuronal network dynamics in a PMCA2-dependent manner. Our data underscore the promise of sheddome analysis in discovering neurobiological mechanisms, provide insight into the biology of ES and its relationship with the CSF, and reveal a mechanism of regulation of Ca2+ homeostasis and neuronal network synchrony by a shed ectodomain.


Asunto(s)
Trastorno del Espectro Autista , Proteínas de la Membrana , Proteínas del Tejido Nervioso , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Trastorno del Espectro Autista/líquido cefalorraquídeo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Membrana Celular/metabolismo , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/líquido cefalorraquídeo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Transducción de Señal
6.
J Vis Exp ; (150)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31424442

RESUMEN

Cellular responses to external stimuli heavily rely on the set of receptors expressed at the cell surface at a given moment. Accordingly, the population of surface-expressed receptors is constantly adapting and subject to strict mechanisms of regulation. The paradigmatic example and one of the most studied trafficking events in biology is the regulated control of the synaptic expression of glutamate receptors (GluRs). GluRs mediate the vast majority of excitatory neurotransmission in the central nervous system and control physiological activity-dependent functional and structural changes at the synaptic and neuronal levels (e.g., synaptic plasticity). Modifications in the number, location, and subunit composition of surface expressed GluRs deeply affect neuronal function and, in fact, alterations in these factors are associated with different neuropathies. Presented here is a method to study GluR trafficking in dissociated hippocampal primary neurons. An "antibody-feeding" approach is used to differentially visualize GluR populations expressed at the surface and internal membranes. By labeling surface receptors on live cells and fixing them at different times to allow for receptors endocytosis and/or recycling, these trafficking processes can be evaluated and selectively studied. This is a versatile protocol that can be used in combination with pharmacological approaches or overexpression of altered receptors to gain valuable information about stimuli and molecular mechanisms affecting GluR trafficking. Similarly, it can be easily adapted to study other receptors or surface expressed proteins.


Asunto(s)
Hipocampo/metabolismo , Receptores de Glutamato/metabolismo , Animales , Anticuerpos/metabolismo , Endocitosis/fisiología , Plasticidad Neuronal/fisiología , Transporte de Proteínas/fisiología , Puntos Cuánticos , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología
7.
Cell Rep ; 28(2): 332-341.e5, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291571

RESUMEN

In mature neurons, postsynaptic N-methyl-D-aspartate receptors (NMDARs) are segregated into two populations, synaptic and extrasynaptic, which differ in localization, function, and associated intracellular cascades. These two pools are connected via lateral diffusion, and receptor exchange between them modulates synaptic NMDAR content. Here, we identify the phosphorylation of the PDZ-ligand of the GluN2B subunit of NMDARs (at S1480) as a critical determinant in dynamically controlling NMDAR synaptic content. We find that phosphorylation of GluN2B at S1480 maintains NMDARs at extrasynaptic membranes as part of a protein complex containing protein phosphatase 1 (PP1). Global activation of NMDARs leads to the activation of PP1, which mediates dephosphorylation of GluN2B at S1480 to promote an increase in synaptic NMDAR content. Thus, PP1-mediated dephosphorylation of the GluN2B PDZ-ligand modulates the synaptic expression of NMDARs in mature neurons in an activity-dependent manner, a process with profound consequences for synaptic and structural plasticity, metaplasticity, and synaptic neurotransmission.


Asunto(s)
Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Femenino , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Dominios PDZ , Fosforilación , Proteína Fosfatasa 1/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética
8.
Eur J Cell Biol ; 87(5): 325-34, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18375015

RESUMEN

Presenilin 1-associated protein/mitochondrial carrier homolog 1 (PSAP/Mtch1) is a proapoptotic outer mitochondrial membrane protein first identified as a presenilin 1-associated protein. The mechanism by which it induces apoptosis upon overexpression in cultured cells is so far unknown. We had previously reported that deletion of two independent regions of PSAP/Mtch1 is required to prevent apoptosis. We now report that mitochondrial targeting of the region containing both proapoptotic domains, or any of them independently, to the outer membrane is sufficient to induce apoptosis. On the other hand, targeting of that region to the surface of the endoplasmic reticulum does not induce apoptosis, indicating that attachment of those domains to the outer mitochondrial membrane, and not just cytosolic exposure, is a requisite for apoptosis. Overexpression of PSAP/Mtch1 in cultured cells causes mitochondrial depolarization and apoptosis that does not depend on Bax or Bak, since apoptosis is induced in mouse embryonic fibroblasts lacking these two proteins. Our results suggest that apoptosis induced by PSAP/Mtch1 likely involves the permeability transition pore.


Asunto(s)
Apoptosis , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Línea Celular , Humanos , Ratones , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Estructura Terciaria de Proteína , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
9.
Neuroscientist ; 19(1): 62-75, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22343826

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptor, which play a central role in learning, memory, and synaptic development. NMDARs are assembled as tetramers composed of two GluN1 subunits and two GluN2 or GluN3 subunits. Although NMDARs are widely expressed throughout the central nervous system, their number, localization, and subunit composition are strictly regulated and differ in a cell- and synapse-specific manner. The brain area, developmental stage, and level of synaptic activity are some of the factors that regulate NMDARs. Molecular mechanisms that control subunit-specific NMDAR function include developmental regulation of subunit transcription/translation, differential trafficking through the secretory pathway, posttranscriptional modifications such as phosphorylation, and protein-protein interactions. The GluN2A and GluN2B subunits are highly expressed in cortex and hippocampus and confer many of the distinct properties on endogenous NMDARs. Importantly, the synaptic NMDAR subunit composition changes from predominantly GluN2B-containing to GluN2A-containing NMDARs during synaptic maturation and in response to activity and experience. Some of the molecular mechanisms underlying this GluN2 subunit switch have been recently identified. In addition, the balance between synaptic and extrasynaptic NMDARs is altered in several neuronal disorders. Here, the authors summarize the recent advances in the identification of NMDAR subunit-specific regulatory mechanisms.


Asunto(s)
Aprendizaje/fisiología , Receptores de N-Metil-D-Aspartato/clasificación , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Humanos , Memoria/fisiología , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Modelos Moleculares , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Subunidades de Proteína/fisiología
10.
Cell Rep ; 3(3): 607-14, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23478024

RESUMEN

Synaptic activity triggers a profound reorganization of the molecular composition of excitatory synapses. For example, NMDA receptors are removed from synapses in an activity- and calcium-dependent manner, via casein kinase 2 (CK2) phosphorylation of the PDZ ligand of the GluN2B subunit (S1480). However, how synaptic activity drives this process remains unclear because CK2 is a constitutively active kinase, which is not directly regulated by calcium. We show here that activated CaMKII couples GluN2B and CK2 to form a trimolecular complex and increases CK2-mediated phosphorylation of GluN2B S1480. In addition, a GluN2B mutant, which contains an insert to mimic the GluN2A sequence and cannot bind to CaMKII, displays reduced S1480 phosphorylation and increased surface expression. We find that although disrupting GluN2B/CaMKII binding reduces synapse number, it increases synaptic-GluN2B content. Therefore, the GluN2B/CaMKII association controls synapse density and PSD composition in an activity-dependent manner, including recruitment of CK2 for the removal of GluN2B from synapses.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Quinasa de la Caseína II/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Membrana Celular/metabolismo , Ratones , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Transporte de Proteínas , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética
11.
Cell Rep ; 2(5): 1120-8, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23103165

RESUMEN

Membrane-associated guanylate kinases (MAGUKs) are the major family of scaffolding proteins at the postsynaptic density. The PSD-MAGUK subfamily, which includes PSD-95, PSD-93, SAP97, and SAP102, is well accepted to be primarily involved in the synaptic anchoring of numerous proteins, including N-methyl-D-aspartate receptors (NMDARs). Notably, the synaptic targeting of NMDARs depends on the binding of the PDZ ligand on the GluN2B subunit to MAGUK PDZ domains, as disruption of this interaction dramatically decreases NMDAR surface and synaptic expression. We recently reported a secondary interaction between SAP102 and GluN2B, in addition to the PDZ interaction. Here, we identify two critical residues on GluN2B responsible for the non-PDZ binding to SAP102. Strikingly, either mutation of these critical residues or knockdown of endogenous SAP102 can rescue the defective surface expression and synaptic localization of PDZ binding-deficient GluN2B. These data reveal an unexpected, nonscaffolding role for SAP102 in the synaptic clearance of GluN2B-containing NMDARs.


Asunto(s)
Proteínas Nucleares/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Guanilato-Quinasas/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Dominios PDZ , Fosforilación , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/genética , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/genética , Transfección , Técnicas del Sistema de Dos Híbridos
12.
Neuron ; 70(2): 339-51, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21521618

RESUMEN

In cerebral cortex there is a developmental switch from NR2B- to NR2A-containing NMDA receptors (NMDARs) driven by activity and sensory experience. This subunit switch alters NMDAR function, influences synaptic plasticity, and its dysregulation is associated with neurological disorders. However, the mechanisms driving the subunit switch are not known. Here, we show in hippocampal CA1 pyramidal neurons that the NR2B to NR2A switch driven acutely by activity requires activation of NMDARs and mGluR5, involves PLC, Ca(2+) release from IP(3)R-dependent stores, and PKC activity. In mGluR5 knockout mice the developmental NR2B-NR2A switch in CA1 is deficient. Moreover, in visual cortex of mGluR5 knockout mice, the NR2B-NR2A switch evoked in vivo by visual experience is absent. Thus, we establish that mGluR5 and NMDARs are required for the activity-dependent NR2B-NR2A switch and play a critical role in experience-dependent regulation of NMDAR subunit composition in vivo.


Asunto(s)
Adaptación Fisiológica/fisiología , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Estrenos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/citología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , N-Metilaspartato/farmacología , Piperidinas/farmacología , Células Piramidales/efectos de los fármacos , Piridinas/farmacología , Pirrolidinonas/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/genética , Tiazoles/farmacología , Factores de Tiempo , Corteza Visual/fisiología
13.
Neuron ; 67(6): 984-96, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-20869595

RESUMEN

N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a central role in development, synaptic plasticity, and neurological disease. NMDAR subunit composition defines their biophysical properties and downstream signaling. Casein kinase 2 (CK2) phosphorylates the NR2B subunit within its PDZ-binding domain; however, the consequences for NMDAR localization and function are unclear. Here we show that CK2 phosphorylation of NR2B regulates synaptic NR2B and NR2A in response to activity. We find that CK2 phosphorylates NR2B, but not NR2A, to drive NR2B-endocytosis and remove NR2B from synapses resulting in an increase in synaptic NR2A expression. During development there is an activity-dependent switch from NR2B to NR2A at cortical synapses. We observe an increase in CK2 expression and NR2B phosphorylation over this same critical period and show that the acute activity-dependent switch in NR2 subunit composition at developing hippocampal synapses requires CK2 activity. Thus, CK2 plays a central role in determining the NR2 subunit content of synaptic NMDARs.


Asunto(s)
Quinasa de la Caseína II/fisiología , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Adenosina Trifosfato/farmacocinética , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Bencimidazoles/farmacología , Biotinilación/métodos , Células Cultivadas , Corteza Cerebral/citología , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Endocitosis/genética , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Inmunoprecipitación/métodos , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Dominios PDZ/fisiología , Técnicas de Placa-Clamp , Isótopos de Fósforo/farmacocinética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Piperidinas/farmacología , Subunidades de Proteína/genética , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Bloqueadores de los Canales de Sodio/farmacología , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Sinaptofisina/metabolismo , Tetrodotoxina/farmacología , Transfección/métodos , Tirosina/metabolismo
14.
Am J Physiol Cell Physiol ; 293(4): C1347-61, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17670888

RESUMEN

Presenilin 1-associated protein (PSAP) was first identified as a protein that interacts with presenilin 1. It was later reported that PSAP is a mitochondrial protein that induces apoptosis when overexpressed in cultured cells. PSAP is also known as mitochondrial carrier homolog 1 (Mtch1). In this study, we show that there are two proapoptotic PSAP isoforms generated by alternative splicing that differ in the length of a hydrophilic loop located between two predicted transmembrane domains. Using RT-PCR and Western blot assays, we determined that both isoforms are expressed in human and rat tissues as well as in culture cells. Our results indicate that PSAP is an integral mitochondrial outer membrane protein, although it contains a mitochondrial carrier domain conserved in several inner membrane carriers, which partially overlaps one of the predicted transmembrane segments. Deletion of this transmembrane segment impairs mitochondrial import of PSAP. Replacement of this segment with each of two transmembrane domains, with opposite membrane orientations, from an unrelated protein indicated that one of them allowed mitochondrial localization of the PSAP mutant, whereas the other one did not. Our interpretation of these results is that PSAP contains multiple mitochondrial targeting motifs dispersed along the protein but that a transmembrane domain in the correct position and orientation is necessary for membrane insertion. The amino acid sequence within this transmembrane domain may also be important. Furthermore, two independent regions in the amino terminal side of the protein are responsible for its proapoptotic activity. Possible implications of these findings in PSAP function are discussed.


Asunto(s)
Apoptosis/fisiología , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Señales de Clasificación de Proteína/fisiología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Línea Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Fluorescente , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mutación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Señales de Clasificación de Proteína/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA