Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 144(19): 3430-3439, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28827392

RESUMEN

The human spermatogonial compartment is essential for daily production of millions of sperm. Despite this crucial role, the molecular signature, kinetic behavior and regulation of human spermatogonia are poorly understood. Using human testis biopsies with normal spermatogenesis and by studying marker protein expression, we have identified for the first time different subpopulations of spermatogonia. MAGE-A4 marks all spermatogonia, KIT marks all B spermatogonia and UCLH1 all Apale-dark (Ap-d) spermatogonia. We suggest that at the start of the spermatogenic lineage there are Ap-d spermatogonia that are GFRA1High, likely including the spermatogonial stem cells. Next, UTF1 becomes expressed, cells become quiescent and GFRA1 expression decreases. Finally, GFRA1 expression is lost and subsequently cells differentiate into B spermatogonia, losing UTF1 and acquiring KIT expression. Strikingly, most human Ap-d spermatogonia are out of the cell cycle and even differentiating type B spermatogonial proliferation is restricted. A novel scheme for human spermatogonial development is proposed that will facilitate further research in this field, the understanding of cases of infertility and the development of methods to increase sperm output.


Asunto(s)
Espermatogonias/citología , Espermatogonias/metabolismo , Adulto , Anciano , Recuento de Células , Diferenciación Celular , Proliferación Celular , Autorrenovación de las Células , Células Epiteliales/citología , Células Epiteliales/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Cinética , Masculino , Persona de Mediana Edad , Modelos Biológicos , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Adulto Joven
2.
Mol Reprod Dev ; 87(4): 419-429, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32020743

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) and retinoic acid (RA) are two molecules crucial for the regulation of the spermatogonial compartment of the testis. During the cycle of the seminiferous epithelium, their relative concentration oscillates with lower GDNF levels in stages where RA levels are high. It has been recently shown that RA negatively regulates Gdnf expression but the mechanisms behind are so far unknown. Here, we show that RA directly downregulates Gdnf mRNA levels in primary murine Sertoli cells through binding of RARα to a novel DR5-RARE on Gdnf promoter. Pharmacological inhibition and chromatin immunoprecipitation-quantitative polymerase chain reaction analysis suggested that the underlying mechanism involved histone deacetylase activity and epigenetic repression of Gdnf promoter upon RA treatment.


Asunto(s)
Regulación hacia Abajo/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células de Sertoli/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología , Animales , Benzoatos/farmacología , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Epigénesis Genética/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Masculino , Ratones , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Epitelio Seminífero/metabolismo , Células de Sertoli/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Espermatogonias/metabolismo , Estilbenos/farmacología , Transfección
3.
Andrology ; 9(3): 956-964, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33314792

RESUMEN

BACKGROUND: Glial cell line-derived neurotrophic factor (GDNF) is a soluble molecule crucial for the regulation of the spermatogonial stem cells (SSC) of the testis. The effects of GDNF on target cells have been extensively described, but mechanisms underlying GDNF regulation are currently under investigation. In the nervous system, GDNF expression is regulated by pro-inflammatory cytokines including lipopolysaccharide (LPS), interleukin 1 beta (IL-1ß), and tumor necrosis factor alpha (TNF-α) but the effect of these cytokines on GDNF expression in the testis is unclear. OBJECTIVES: The aim of the present study was to investigate the impact of TNF-α on GDNF expression levels using primary murine Sertoli cells as experimental model. MATERIAL AND METHODS: The expression of TNF-α-regulated genes including Gdnf in different culture conditions was determined by real-time PCR. GDNF protein levels were determined by ELISA. The activation of the NF-κb pathway and HES1 levels were assessed by Western Blot analysis and immunofluorescence. HES1 expression was downregulated by RNAi. RESULTS: In primary Sertoli cells, TNF-α downregulates GDNF levels through a nuclear factor-κB (NF-κB)-dependent mechanism. Mechanistically, TNF-α induces the transcriptional repressor HES1 by a NF-Κb-dependent mechanism, which in turn downregulates GDNF. DISCUSSION: Under physiological conditions, TNF-α is secreted by germ cells suggesting that this cytokine plays a role in the paracrine control of SSC niche by modulating GDNF levels. HES1, a well-known target of the Notch pathway, is implicated in the regulation of GDNF expression. In Sertoli cells, TNF-α and Notch signaling may converge at molecular level, to regulate the expression of HES1 and HES1- target genes, including GDNF. CONCLUSIONS: Because of the importance of GDNF for spermatogonial stem cell self-renewal and proliferation, this data may give important insights on how cytokine signals in the testis modulate the expression of niche-derived factors.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , FN-kappa B/metabolismo , Células de Sertoli/metabolismo , Factor de Transcripción HES-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Masculino , Ratones , Cultivo Primario de Células
4.
Curr Cancer Drug Targets ; 17(3): 203-220, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27528362

RESUMEN

Glioblastoma multiforme represents one of the most aggressive tumor of central nervous system. Current therapy includes surgery, radiation and chemotherapy. These treatments are rarely curative and glioma are associated with a poor prognosis. Nanomedicine represents the most innovative branch of medicine since many studies demonstrated great advantage in the diagnosis and therapy of several diseases. In this review we will summarize the results obtained by the use of nanoparticles and extracellular vesicles in glioblastoma. A great interest is raising from these studies that underlined the efficacy and specificity of this treatment for glioma, reducing side-effects associated with conventional therapies.


Asunto(s)
Neoplasias Encefálicas/terapia , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/terapia , Nanopartículas/uso terapéutico , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Terapia Genética/métodos , Humanos , Inmunoterapia/métodos , Liposomas/administración & dosificación , Liposomas/química , Terapia Molecular Dirigida/métodos , Nanopartículas/administración & dosificación , Nanopartículas/química , Nanocáscaras/química , Nanocáscaras/uso terapéutico , Puntos Cuánticos
5.
Curr Drug Targets ; 17(3): 303-10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25915486

RESUMEN

Bone is the principal site of metastasis for many carcinomas, including prostate. Once bone metastases are established, the chances of survival dramatically drop. Bone metastases place patients at increased risk of skeletal-related events, including pathologic fractures, bone pain and hypercalcemia. Indeed, skeletal metastases represent the prevalent cause of morbidity and mortality for many tumors. They are the result of interactions among tumour cells, bone marrow environment and bone cells (vicious cycle). In the last few years many efforts were undertaken to identify new therapeutic approaches for bone metastasis. Current therapies target the several players of bone vicious cycle. However many adverse effects are associated with these treatments. This review will focus on the new emerging sector of nanomedicine, that could be important to identify more specific and safe treatments for bone metastasis.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Nanopartículas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias Óseas/mortalidad , Neoplasias Óseas/secundario , Doxorrubicina/efectos adversos , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapéutico , Humanos , Masculino , Nanopartículas/química , Neoplasias de la Próstata/mortalidad
6.
Expert Opin Biol Ther ; 15(4): 495-504, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25539575

RESUMEN

BACKGROUND: Malignant glial tumors, including glioblastoma multiforme, account for 15 - 20% of pediatric CNS malignancies. They are most resistant to therapy and are associated with a poor prognosis. OBJECTIVE: Given the ability of mesenchymal stem cells (MSCs) to affect glioma growth, we investigated the effects of extracellular vesicles (EVs) derived from MSCs on U87MG glioblastoma cells line. METHODS: EVs were isolated from culture media of MSCs from different sources, including bone marrow (BM), umbilical cord (UC) and adipose tissue (AT) and added to U87MG culture. The internalization and the effects of BM-, UC- and AT-MSC-EVs on proliferation and apoptosis of tumor cells were evaluated. RESULTS: Both confocal microscopy and FACS analysis showed internalization of EVs into tumor cells. BM- and UC-MSC-EVs decreased cell proliferation, while an opposite effect was observed with AT-MSC-EVs. Moreover, both BM- and UC-MSC-EVs induced apoptosis of glioblastoma cells, while AT-MSC-EVs had no effect. Loading UC-MSC-EVs with Vincristine further increased cytotoxicity when compared both to the free drug and to untreated EVs. CONCLUSIONS: Different effects of MSC-EVs on cancer cells were observed depending on their tissue of origin. Moreover, MSC-EVs can deliver antiblastic drugs to glioblastoma cells.


Asunto(s)
Tejido Adiposo/metabolismo , Células de la Médula Ósea/metabolismo , Exosomas/metabolismo , Glioblastoma/patología , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical/metabolismo , Tejido Adiposo/citología , Adulto , Antineoplásicos Fitogénicos/administración & dosificación , Apoptosis/fisiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Glioblastoma/terapia , Humanos , Cordón Umbilical/citología , Vincristina/administración & dosificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA