Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 61(10): 4394-4403, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35238551

RESUMEN

The occurrence of many phases and stoichiometries of nickel phosphides calls for the development of synthetic levers to selectively produce phases with purity. Herein, thiol (-SH) and carboxylate (-COO-) functional groups in ligands were found to effectively tune the energetics of nickel phosphide phases during hydrothermal synthesis. The initial kinetic product Ni2P transforms into thermodynamically stable Ni12P5 at longer reaction times. The binding of carboxylate onto Ni2P promotes this phase transformation to produce pure-phase Ni12P5 within 5 h compared to previous reports (∼48 h). Thiol-containing ligands inhibit this transformation process by providing higher stability to the Ni2P phase. Cysteine-capped Ni2P showed excellent geometric and intrinsic electrocatalytic activity toward both hydrogen evolution and hydrazine oxidation reactions under alkaline conditions. This bifunctional electrocatalytic nature enables cysteine-capped Ni2P to promote hydrazine-assisted hydrogen generation that requires lower energy (0.46 V to achieve 10 mA/cmgeo2) compared to the conventional overall water splitting (1.81 V to achieve 10 mA/cmgeo2) for hydrogen generation.

2.
Langmuir ; 35(19): 6211-6230, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-30149717

RESUMEN

The unique optical characteristics of lanthanides (Ln3+) such as high color purity, long excited-state lifetimes, less perturbation of excited states by the crystal field environment, and the easy spectral conversion of wavelengths through upconversion and downconversion processes have caught the attention of many scientists in the recent past. To broaden the scope of using these properties, it is important to make suitable Ln3+-doped materials, particularly in colloidal forms. In this feature article, we discuss the different synthesis strategies for making Ln3+-doped nanoparticles in colloidal forms, particularly ways of functionalizing hydrophobic surfaces to hydrophilic surfaces to enhance their dispersibility and luminescence in aqueous media. We have enumerated the various strategies and sensitizers utilized to increase the luminescence of the nanoparticles. Furthermore, the use of these colloidal nanoparticle systems in sensing application by the appropriate selection of capping ligands has been discussed. In addition, we have shown how the energy transfer efficiency from Ce3+ to Ln3+ ions can be utilized for the detection of toxic metal ions and small molecules. Finally, we discuss examples where the spectral conversion ability of these materials has been used in photocatalysis and solar cell applications.

3.
Chempluschem ; 88(9): e202300448, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37688428

RESUMEN

A series of calcined Chitosan (CS) photothermal catalysts are prepared by heating the biopolymer at different temperatures. The photothermal conversion (light to heat) ability of these calcined CS materials is evaluated by measuring the temperature change with respect to time and lamp power. The material prepared at 300 °C (Cal-CS-300) shows excellent photothermal conversion ability which is explored for the CO2 cycloaddition reaction with epoxides to produce cyclic carbonates under mild reaction parameters (1 atm CO2 pressure, 25 °C). The study reveals the importance of defects present in the material on both photothermal conversion and CO2 fixation efficiency. Under optimized reaction conditions, Cal-CS-300 is able to convert a range of epoxides into their respective cyclic carbonates (>97 % selectivity) and retains its catalytic activity (~86 %) for 5 cycles of catalysis without losing its chemical integrity. The use of ubiquitously available biopolymer together with light makes this approach sustainable for preparing value added chemicals.

4.
Dalton Trans ; 52(42): 15360-15364, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37740280

RESUMEN

Herein, we demonstrate the construction of a 1D/2D heterostructure of cobalt phthalocyanine (CoPc)-carbon nitride (C3N4) for electrochemical N2 reduction to NH3. Improved performance originates from the higher exposure of active surface sites. The electrochemical NRR performance showed an NH3 formation rate of 423.8 µg h-1 mgcat-1, a high faradaic efficiency (FE) of 33%, and stability for 20 h. This study provides a new strategy for designing a highly efficient 1D/2D electrocatalytic system for ammonia synthesis.

5.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 79(Pt 2): 148-156, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36920873

RESUMEN

Amongst the derivatives of 4-biphenylcarboxylic acid and amino acid esters, the crystal structure of 4-biphenylcarboxy-(L)-phenylalaninate is unusual owing to its monoclinic symmetry within a pseudo-orthorhombic crystal system. The distortion is described by a disparate rotational property around the chiral centers (ϕchiral ≃ -129° and 58°) of the two molecules in the asymmetric unit. Each of these molecules comprises planar biphenyl moieties (ϕbiphenyl = 0°). Using temperature-dependent single-crystal X-ray diffraction experiments we show that the compound undergoes a phase transition below T ∼ 124 K that is characterized by a commensurate modulation wavevector, q = δ(101), δ = ½. The (3+1)-dimensional modulated structure at T = 100 K suggests that the phase transition drives the biphenyl moieties towards noncoplanar conformations with significant variation of internal torsion angle (ϕmaxbiphenyl ≤ 20°). These intramolecular rotations lead to dimerization of the molecular stacks that are described predominantly by distortions in intermolecular tilts (θmax ≤ 20°) and small variations in intermolecular distances (Δdmax ≃ 0.05 Å) between biphenyl molecules. Atypical of modulated structures and superstructures of biphenyl and other polyphenyls, the rotations of individual molecules are asymmetric (Δϕbiphenyl ≈ 5°) while ϕbiphenyl of one independent molecule is two to four times larger than the other. Crystal-chemical analysis and phase relations in superspace suggest multiple competing factors involving intramolecular steric factors, intermolecular H-C...C-H contacts and weak C-H...O hydrogen bonds that govern the distinctively unequal torsional properties of the molecules.

6.
ACS Omega ; 4(2): 3169-3177, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31459534

RESUMEN

The property of upconverting nanoparticles to convert the low-energy near-infrared (NIR) light into high-energy visible light has made them a potential candidate for various biomedical applications including photodynamic therapy (PDT). In this work, we show how a surface functionalization approach on the nanoparticle can be used to develop a nanocomposite hydrogel which can be of potential use for the PDT application. The upconverting hydrogel nanocomposite was synthesized by reacting 10-undecenoic acid-capped Yb3+/Er3+-doped NaYF4 nanoparticles with the thermosensitive N-isopropylacrylamide monomer. The formation of hydrogel was completed within 15 min and hydrogel nanocomposites showed strong enhancement in the visible light emission compared to the emission obtained from 10-undecenoic acid-capped Yb3+/Er3+-doped NaYF4 nanoparticles via the upconversion process (under 980 nm laser excitation). The upconverting hydrogel nanocomposites displayed high swelling behavior in water because of their porous nature. The porous structure ensured a higher loading of methylene blue dye (∼78% in 1 h) into the upconverting hydrogel, which was achieved via the swelling diffusion phenomenon. Upon excitation with the NIR light, the visible light emitted from the hydrogel activated the photosensitizer methylene blue which generated reactive oxygen species. Our results were able to show that the methylene blue-loaded composite hydrogel can be a potential platform for the future of NIR-triggered PDT in skin cancer treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA