Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Semin Cell Dev Biol ; 98: 154-166, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31699542

RESUMEN

Metabolic reprogramming is a hallmark of cancer and the link between oncogenes activation, tumor supressors inactivation and bioenergetics modulation is well established. However, numerous carcinogenic environmental factors are responsible for early cancer initiation and their impact on metabolic reprogramming just starts to be deciphered. For instance, it was recently shown that UVB irradiation triggers metabolic reprogramming at the pre-cancer stage with implication for skin cancer detection and therapy. These observations foster the need to study the early changes in tissue metabolism following exposure to other carcinogenic events. According to the International Agency for Research on Cancer (IARC), tobacco smoke is a major class I-carcinogenic environmental factor that contains different carcinogens, but little is known on the impact of tobacco smoke on tissue metabolism and its participation to cancer initiation. In particular, tobacco-specific nitrosamines (TSNAs) play a central role in tobacco-smoke mediated cancer initiation. Here we describe the recent advances that have led to a new hypothesis regarding the link between nitrosamines signaling and metabolic reprogramming in cancer.


Asunto(s)
Neoplasias/metabolismo , Nicotiana/química , Nitrosaminas/metabolismo , Reprogramación Celular , Humanos , Neoplasias/patología
2.
J Cell Physiol ; 234(8): 13137-13144, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30549033

RESUMEN

The human epidermal growth factor 2 (HER2) gene undergoes various mutations that could alter its activity or respond to the antibody therapies. Cetuximab, a known anti-EGFR monoclonal antibody (mAB), is widely administered in metastatic colorectal cancer (mCRC) cases. Here we identified mCRC patients who did not respond to cetuximab (500 mg/m2 , q2w) after fluoropyrimidine/oxaliplatin regimen failure. Tumor samples were examined with immunohistochemistry for protein distribution, polymerase chain reaction (PCR) sequencing for mutation detection and real-time PCR for mRNA expression pattern analysis between cetuximab sensitive and resistance patients. The conformational differences of normal and mutated protein structures were predicted by bioinformatics analysis. The 5-year survival rates of target groups were estimated using the Kaplan-Meier method. Immunohistochemistry showed that all cases had high level of HER2 protein. No K-Ras or B-Raf mutation was observed among the study population; however, cetuximab resistance patients harbored a somatic mutation R784G at the exon 20 region of HER2 coding sequence. According to bioinformatics analysis, this mutation caused a notable misfold in protein conformation. Meanwhile, survival analysis showed R784G mutated mCRC patients had shortened survival rate compared with the mCRC cases with wild-type HER2. Collectively, these data report a new mechanism of resistance to cetuximab and might be applicable in modifying new therapeutic strategies for HER2 involved cancers.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Cetuximab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/genética , Receptor ErbB-2/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación
3.
Antioxid Redox Signal ; 36(7-9): 525-549, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34715750

RESUMEN

Aims: Lung cancer is the leading cause of cancer death worldwide, and tobacco smoking is a recognized major risk factor for lung tumor development. We analyzed the effect of tobacco-specific nitrosamines (TSNAs) on human lung adenocarcinoma metabolic reprogramming, an emergent hallmark of carcinogenesis. Results: A series of in vitro and in vivo bioenergetic, proteomic, metabolomic, and tumor biology studies were performed to analyze changes in lung cancer cell metabolism and the consequences for hallmarks of cancer, including tumor growth, cancer cell invasion, and redox signaling. The findings revealed that nicotine-derived nitrosamine ketone (NNK) stimulates mitochondrial function and promotes lung tumor growth in vivo. These malignant properties were acquired from the induction of mitochondrial biogenesis induced by the upregulation and activation of the beta-2 adrenergic receptors (ß2-AR)-cholinergic receptor nicotinic alpha 7 subunit (CHRNAα7)-dependent nitrosamine canonical signaling pathway. The observed NNK metabolic effects were mediated by TFAM overexpression and revealed a key role for mitochondrial reactive oxygen species and Annexin A1 in tumor growth promotion. Conversely, ectopic expression of the mitochondrial antioxidant enzyme manganese superoxide dismutase rescued the reprogramming and malignant metabolic effects of exposure to NNK and overexpression of TFAM, underlining the link between NNK and mitochondrial redox signaling in lung cancer. Innovation: Our findings describe the metabolic changes caused by NNK in a mechanistic framework for understanding how cigarette smoking causes lung cancer. Conclusion: Mitochondria play a role in the promotion of lung cancer induced by tobacco-specific nitrosamines. Antioxid. Redox Signal. 36, 525-549.


Asunto(s)
Neoplasias Pulmonares , Nitrosaminas , Carcinógenos/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Nitrosaminas/farmacología , Oxidación-Reducción , Proteómica , Receptores Adrenérgicos/metabolismo , Transducción de Señal , Nicotiana/efectos adversos
4.
Cancers (Basel) ; 13(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917317

RESUMEN

Tumor cells display metabolic alterations when compared to non-transformed cells. These characteristics are crucial for tumor development, maintenance and survival providing energy supplies and molecular precursors. Anaplerosis is the property of replenishing the TCA cycle, the hub of carbon metabolism, participating in the biosynthesis of precursors for building blocks or signaling molecules. In advanced prostate cancer, an upshift of succinate-driven oxidative phosphorylation via mitochondrial Complex II was reported. Here, using untargeted metabolomics, we found succinate accumulation mainly in malignant cells and an anaplerotic effect contributing to biosynthesis, amino acid, and carbon metabolism. Succinate also stimulated oxygen consumption. Malignant prostate cells displayed higher mitochondrial affinity for succinate when compared to non-malignant prostate cells and the succinate-driven accumulation of metabolites induced expression of mitochondrial complex subunits and their activities. Moreover, extracellular succinate stimulated migration, invasion, and colony formation. Several enzymes linked to accumulated metabolites in the malignant cells were found upregulated in tumor tissue datasets, particularly NME1 and SHMT2 mRNA expression. High expression of the two genes was associated with shorter disease-free survival in prostate cancer cohorts. Moreover, in-vitro expression of both genes was enhanced in prostate cancer cells upon succinate stimulation. In conclusion, the data indicate that uptake of succinate from the tumor environment has an anaplerotic effect that enhances the malignant potential of prostate cancer cells.

5.
J Clin Invest ; 131(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33393495

RESUMEN

Metabolic reprogramming is a common hallmark of cancer, but a large variability in tumor bioenergetics exists between patients. Using high-resolution respirometry on fresh biopsies of human lung adenocarcinoma, we identified 2 subgroups reflected in the histologically normal, paired, cancer-adjacent tissue: high (OX+) mitochondrial respiration and low (OX-) mitochondrial respiration. The OX+ tumors poorly incorporated [18F]fluorodeoxy-glucose and showed increased expression of the mitochondrial trifunctional fatty acid oxidation enzyme (MTP; HADHA) compared with the paired adjacent tissue. Genetic inhibition of MTP altered OX+ tumor growth in vivo. Trimetazidine, an approved drug inhibitor of MTP used in cardiology, also reduced tumor growth and induced disruption of the physical interaction between the MTP and respiratory chain complex I, leading to a cellular redox and energy crisis. MTP expression in tumors was assessed using histology scoring methods and varied in negative correlation with [18F]fluorodeoxy-glucose incorporation. These findings provide proof-of-concept data for preclinical, precision, bioenergetic medicine in oxidative lung carcinomas.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/enzimología , Subunidad alfa de la Proteína Trifuncional Mitocondrial , Proteínas de Neoplasias , Trimetazidina/farmacología , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Subunidad alfa de la Proteína Trifuncional Mitocondrial/antagonistas & inhibidores , Subunidad alfa de la Proteína Trifuncional Mitocondrial/biosíntesis , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Oxidación-Reducción
6.
Oncogene ; 39(3): 617-636, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527668

RESUMEN

The basic understanding of the biological effects of eukaryotic translation initiation factors (EIFs) remains incomplete, notably for their roles independent of protein translation. Different EIFs exhibit nuclear localization and DNA-related functions have been proposed, but the understanding of EIFs novel functions beyond protein translation lacks of integrative analyses between the genomic and the proteomic levels. Here, the noncanonical function of EIF3F was studied in human lung adenocarcinoma by combining methods that revealed both the protein-protein and the protein-DNA interactions of this factor. We discovered that EIF3F promotes cell metastasis in vivo. The underpinning molecular mechanisms involved the regulation of a cluster of 34 metastasis-promoting genes including Snail2, as revealed by proteomics combined with immuno-affinity purification of EIF3F and ChIP-seq/Q-PCR analyses. The interaction between EIF3F and signal transducer and activator of transcription 3 (STAT3) controlled the EIF3F-mediated increase in Snail2 expression and cellular invasion, which were specifically abrogated using the STAT3 inhibitor Nifuroxazide or knockdown approaches. Furthermore, EIF3F overexpression reprogrammed energy metabolism through the activation of AMP-activated protein kinase and the stimulation of oxidative phosphorylation. Our findings demonstrate the role of EIF3F in the molecular control of cell migration, invasion, bioenergetics, and metastasis. The discovery of a role for EIF3F-STAT3 interaction in the genetic control of cell migration and metastasis in human lung adenocarcinoma could lead to the development of diagnosis and therapeutic strategies.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Núcleo Celular/metabolismo , Metabolismo Energético/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Factor de Transcripción STAT3/metabolismo , Células A549 , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Núcleo Celular/genética , Núcleo Celular/patología , Conjuntos de Datos como Asunto , Metabolismo Energético/efectos de los fármacos , Factor 3 de Iniciación Eucariótica/genética , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Hidroxibenzoatos/farmacología , Pulmón/citología , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Ratones , Mutación , Invasividad Neoplásica/genética , Nitrofuranos/farmacología , Fosforilación Oxidativa/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , RNA-Seq , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Factores de Transcripción de la Familia Snail/genética , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Antioxid Redox Signal ; 33(13): 883-902, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32475148

RESUMEN

Aims: REDOX signaling from reactive oxygen species (ROS) generated by the mitochondria (mitochondrial reactive oxygen species [mtROS]) has been implicated in cancer growth and survival. Here, we investigated the effect of 5-(4-methoxyphenyl)-3H-1,2-dithiole-3-thione (AOL), a recently characterized member of the new class of mtROS suppressors (S1QELs), on human lung adenocarcinoma proteome reprogramming, bioenergetics, and growth. Results: AOL reduced steady-state cellular ROS levels in human lung cancer cells without altering the catalytic activity of complex I. AOL treatment induced dose-dependent inhibition of lung cancer cell proliferation and triggered a reduction in tumor growth in vivo. Molecular investigations demonstrated that AOL reprogrammed the proteome of human lung cancer cells. In particular, AOL suppressed the determinants of the Warburg effect and increased the expression of the complex I subunit NDUFV1 which was also identified as AOL binding site using molecular modeling computer simulations. Comparison of the molecular changes induced by AOL and MitoTEMPO, an mtROS scavenger that is not an S1QEL, identified a core component of 217 proteins commonly altered by the two treatments, as well as drug-specific targets. Innovation: This study provides proof-of-concept data on the anticancer effect of AOL on mouse orthotopic human lung tumors. A unique dataset on proteomic reprogramming by AOL and MitoTEMPO is also provided. Lastly, our study revealed the repression of NDUFV1 by S1QEL AOL. Conclusion: Our findings demonstrate the preclinical anticancer properties of S1QEL AOL and delineate its mode of action on REDOX and cancer signaling.


Asunto(s)
Adenocarcinoma del Pulmón/etiología , Adenocarcinoma del Pulmón/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Óxidos N-Cíclicos/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA