Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Environ Manage ; 354: 120477, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417362

RESUMEN

The Indian coastal waters are stressed due to a multitude of factors, such as the discharge of industrial effluents, urbanization (municipal sewage), agricultural runoff, and river discharge. The coastal waters along the eastern and western seaboard of India exhibit contrasting characteristics in terms of seasonality, the magnitude of river influx, circulation pattern, and degree of anthropogenic activity. Therefore, understanding these processes and forecasting their occurrence is highly necessary to secure the health of coastal waters, habitats, marine resources, and the safety of tourists. This article introduces an integrated buoy-satellite based Water Quality Nowcasting System (WQNS) to address the unique challenges of water quality monitoring in Indian coastal waters and to boost the regional blue economy. The Indian National Centre for Ocean Information Services (INCOIS) has launched a first-of-its-kind WQNS, and positioned the buoys at two important locations along the east (Visakhapatnam) and west (Kochi) coast of India, covering a range of environmental conditions and tourist-intensive zones. These buoys are equipped with different physical-biogeochemical sensors, data telemetry systems, and integration with satellite-based observations for real-time data transmission to land. The sensors onboard these buoys continuously measure 22 water quality parameters, including surface current (speed and direction), salinity, temperature, pH, dissolved oxygen, phycocyanin, phycoerythrin, Coloured Dissolved Organic Matter, chlorophyll-a, turbidity, dissolved methane, hydrocarbon (crude and refined), scattering, pCO2 (water and air), and inorganic macronutrients (nitrite, nitrate, ammonium, phosphate, silicate). This real-time data is transmitted to a central processing facility at INCOIS, and after necessary quality control, the data is disseminated through the INCOIS website. Preliminary results from the WQNS show promising outcomes, including the short-term changes in the water column oxic and hypoxic regimes within a day in coastal waters off Kochi during the monsoon period, whereas effluxing of high levels of CO2 into the atmosphere associated with the mixing of water, driven by local depression in the coastal waters off Visakhapatnam. The system has demonstrated its ability to detect changes in the water column properties due to episodic events and mesoscale processes. Additionally, it offers valuable data for research, management, and policy development related to coastal water quality.


Asunto(s)
Ecosistema , Calidad del Agua , India , Océanos y Mares , Naciones Unidas , Monitoreo del Ambiente , Agua de Mar/química
2.
Environ Microbiol ; 25(11): 2118-2141, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37311449

RESUMEN

The Bay of Bengal (BoB) is a 2,600,000 km2 expanse in the Indian Ocean upon which many humans rely. However, the primary producers underpinning food chains here remain poorly characterized. We examined phytoplankton abundance and diversity along strong BoB latitudinal and vertical salinity gradients-which have low temperature variation (27-29°C) between the surface and subsurface chlorophyll maximum (SCM). In surface waters, Prochlorococcus averaged 11.7 ± 4.4 × 104 cells ml-1 , predominantly HLII, whereas LLII and 'rare' ecotypes, HLVI and LLVII, dominated in the SCM. Synechococcus averaged 8.4 ± 2.3 × 104 cells ml-1 in the surface, declined rapidly with depth, and population structure of dominant Clade II differed between surface and SCM; Clade X was notable at both depths. Across all sites, Ostreococcus Clade OII dominated SCM eukaryotes whereas communities differentiated strongly moving from Arabian Sea-influenced high salinity (southerly; prasinophytes) to freshwater-influenced low salinity (northerly; stramenopiles, specifically, diatoms, pelagophytes, and dictyochophytes, plus the prasinophyte Micromonas) surface waters. Eukaryotic phytoplankton peaked in the south (1.9 × 104 cells ml-1 , surface) where a novel Ostreococcus was revealed, named here Ostreococcus bengalensis. We expose dominance of a single picoeukaryote and hitherto 'rare' picocyanobacteria at depth in this complex ecosystem where studies suggest picoplankton are replacing larger phytoplankton due to climate change.


Asunto(s)
Chlorophyta , Ecosistema , Humanos , Salinidad , Bahías , Agua de Mar/microbiología , Fotosíntesis , Fitoplancton , Clorofila
3.
J Environ Manage ; 288: 112390, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33773214

RESUMEN

Oligotrophic waters (OW), generally favour longer food chain facilitated by the microbial loop. In such ecosystems, physical mixing (e.g. upwelling, and winter convection) inject nutrients and propagules from subsurface to the photic zone. Such events are expected to alter the food chain through shifts in the plankton community. Mesocosm experiments were carried out to evaluate the influence of nutrient enrichment from the deep (100-150 m) on the surface plankton community for the first time in the Arabian Sea, through custom-designed enclosures in OW of the central-eastern Arabian Sea (CEAS). Surface water was characterized by low nutrients and phytoplankton biomass (chlorophyll-a of <0.2 µg m-3) and upon nutrient enrichment yielded differing response. Higher abundance of picophytoplankton, bacteria and protists was noticed at a depth of ~100 m than at surface. The inoculation of such a population to the surface, resulted in a significant enhancement of autotrophic (picophytoplankton) and heterotrophic (bacteria and protists) populations. However, significant changes in the abundance of larger plankton was not evident till three days of incubation. Even though autotrophic picophytoplankton responded positively, a distinct increase in chlorophyll-a was not evident. This study points out that the lack of sufficient viable microphytoplankton propagules, neither at the surface nor at the depth (inoculum) are the possible reasons for the lack of their distinct positive response. These experiments suggest the dominance of microbial community response to physical mixing in the OW regions of the Arabian Sea and the importance of propagule diversity. The insights from this experiment will serve as a precursor for appropriate modifications in ocean modelling and forecasting studies and help in building global environmental management tools.


Asunto(s)
Ecosistema , Plancton , Biomasa , Procesos Heterotróficos , Nutrientes , Fitoplancton
5.
Environ Monit Assess ; 189(9): 474, 2017 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28849296

RESUMEN

Variability in horizontal zooplankton biomass distribution was investigated over 13 months in the Godavari estuary, along with physical (river discharge, temperature, salinity), chemical (nutrients, particulate organic matter), biological (phytoplankton biomass), and geological (suspended matter) properties to examine the influencing factors on their spatial and temporal variabilities. The entire estuary was filled with freshwater during peak discharge period and salinity near zero, increased to ~ 34 psu during dry period with relatively high nutrient levels during former than the latter period. Due to low flushing time (< 1 day) and high suspended load (> 500 mg L-1) during peak discharge period, picoplankton (cyanophyceae) contributed significantly to the phytoplankton biomass (Chl-a) whereas microplankton and nanoplankton (bacillariophyceae, and chlorophyceae) during moderate and mostly microplankton during dry period. Zooplankton biomass was the lowest during peak discharge period and increased during moderate followed by dry period. The zooplankton abundance was controlled by dead organic matter during peak discharge period, while both phytoplankton biomass and dead organic matter during moderate discharge and mostly phytoplankton biomass during dry period. This study suggests that significant modification of physico-chemical properties by river discharge led to changes in phytoplankton composition and dead organic matter concentrations that alters biomass, abundance, and composition of zooplankton in the Godavari estuary.


Asunto(s)
Monitoreo del Ambiente/métodos , Estuarios , Ríos/química , Movimientos del Agua , Zooplancton/crecimiento & desarrollo , Animales , Biomasa , India , Fitoplancton/crecimiento & desarrollo , Salinidad , Estaciones del Año , Análisis Espacio-Temporal , Temperatura
6.
Environ Sci Pollut Res Int ; 31(22): 31787-31805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38639903

RESUMEN

The coastal ocean receives nutrient pollutants from various sources, such as aerosols, municipal sewage, industrial effluents and groundwater discharge, with variable concentrations and stoichiometric ratios. The objective of this study is to examine the response of phytoplankton to these pollutants in the coastal water under silicate-rich and silicate-poor coastal waters. In order to achieve this, a microcosm experiment was conducted by adding the pollutants from various sources to the coastal waters during November and January, when the water column physicochemical characteristics are different. Low salinity and high silicate concentration were observed during November due to the influence of river discharge contrasting to that observed during January. Among the various sources of pollutants used, aerosols and industrial effluents did not contribute silicate whereas groundwater and municipal sewage contained high concentrations of silicate along with nitrate and phosphate during both the study periods. During November, an increase in phytoplankton biomass was noticed in all pollutant-added samples, except municipal sewage, due to the limitation of growth by nitrate. On the other hand, an increase in biomass and abundance of phytoplankton was observed in all pollutant-added samples, except for aerosol, during January. Increase in phytoplankton abundance associated with decrease in biomass was observed in aerosol-added sample due to co-limitation of silicate and phosphate during January. A significant response of Thalassiothrix sp. was observed for industrial effluent-added sample during November, whereas Chaetoceros sp. and Skeletonema sp. increased significantly during January. Higher increase in phytoplankton biomass was observed during November associated with higher availability of silicate in the coastal waters in January. Interestingly, an increase in the contribution of dinoflagellates was observed during January associated with low silicate in the coastal waters, suggesting that the concentration of silicate in the coastal waters determines the response of the phytoplankton group to pollutant inputs. This study suggested that silicate concentration in the coastal waters must be considered, in addition to the coastal currents, while computing dilution factors for the release of pollutants to the coastal ocean to avoid occurrence of unwanted phytoplankton blooms.


Asunto(s)
Bahías , Monitoreo del Ambiente , Fitoplancton , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Nitratos/análisis , Biomasa
7.
Environ Sci Pollut Res Int ; 31(38): 50820-50838, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102145

RESUMEN

Submarine groundwater drainage (SGD) changes the elemental composition of the neighboring coastal ocean and impacts the biogeochemical cycles. To examine the seasonal and spatial variability in dissolved organic carbon (DOC) and labile organic compound biochemical compounds like dissolved carbohydrates (TDCHO), dissolved proteins (TDPRO), and dissolved free amino acid (TDFAA) concentrations during the dry and wet periods, groundwater samples were taken at 90 locations (180 samples) along the Indian coast. The mean DOC contents in Indian coastal groundwaters were more significant than the global mean values. DOC, TDCHO, TDPRO, and TDFAA concentrations are higher during wet than dry periods. The DOC and labile organic compound showed a substantial positive association with soil organic carbon, and respective labile compounds in soil, population, and land usage and poor relation with woodland territories, implying that soil organic compounds leaching is a source of DOC and other labile organic compounds into the groundwater. DOC and other labile compounds concentrations were linearly associated with population density, land usage, and sewage production, demonstrating that anthropogenic activities tightly regulate the formation of DOC in groundwater. During the wet and dry periods, total labile organic compounds (TDCHO, TDFAA, and TDPRO) constituted 21% and 10.5% of DOC, respectively. Compared to the wet time, more aromatic compounds accumulated during the dry season but were less bioavailable. SGD DOC flux contributed 2-7% of riverine DOC flux to the coastal ocean. The SGD flux from the Indian subcontinent to the nearby northern Indian Ocean accounts for approximately 2% of the worldwide SGD flux. The effect of DOC flux via SGD on coastal bacterial activity, the plankton food web, and the oxygen minimum zone must be studied.


Asunto(s)
Carbono , Monitoreo del Ambiente , Agua Subterránea , Compuestos Orgánicos , India , Agua Subterránea/química , Carbono/análisis , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , Estaciones del Año
8.
Sci Data ; 11(1): 384, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615101

RESUMEN

Lack of sufficient observations has been an impediment for understanding the spatial and temporal variability of sea-surface pCO2 for the Bay of Bengal (BoB). The limited number of observations into existing machine learning (ML) products from BoB often results in high prediction errors. This study develops climatological sea-surface pCO2 maps using a significant number of open and coastal ocean observations of pCO2 and associated variables regulating pCO2 variability in BoB. We employ four advanced ML algorithms to predict pCO2. We use the best ML model to produce a high-resolution climatological product (INCOIS-ReML). The comparison of INCOIS-ReML pCO2 with RAMA buoy-based sea-surface pCO2 observations indicates INCOIS-ReML's satisfactory performance. Further, the comparison of INCOIS-ReML pCO2 with existing ML products establishes the superiority of INCOIS-ReML. The high-resolution INCOIS-ReML greatly captures the spatial variability of pCO2 and associated air-sea CO2 flux compared to other ML products in the coastal BoB and the northern BoB.

9.
Mar Environ Res ; 197: 106480, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564848

RESUMEN

Impacts of river discharge on coastal ocean processes are multi-dimensional. Studies on sinking particle fluxes, composition and their seasonal variability in coastal oceans are very limited. In this study, we investigated the impact of river discharge on seasonal variability in sinking fluxes of total mass, biogenic and lithogenic material in a river-dominated continental margin, western coastal Bay of Bengal. Higher POC, lithogenic and total mass fluxes were found during early southwest monsoon, and are decoupled with peak river discharge and elevated primary production. It is attributed to cross-shelf transport of re-suspended surface sediments from shelf region. Peak river discharge followed by elevated chlorophyll-a suggest nutrients supply though river discharge support primary production. Elemental C:N ratios, δ13C and δ15N results likely suggest that both marine and terrestrial sources contributed to sinking POM, . Overall, higher sinking fluxes during southwest monsoon than rest of the year suggest that seasonal river discharge exerts considerable impact on sinking fluxes in the western coastal Bay of Bengal.


Asunto(s)
Bahías , Material Particulado , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Ríos , Carbono/análisis
10.
Environ Sci Pollut Res Int ; 30(18): 53616-53634, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36862297

RESUMEN

Warming due to climate change stratifies the upper ocean and reduces nutrient input to the photic zone resulting in a decline in net primary production (NPP). On the other hand, climate change increases both anthropogenic aerosol input into the atmosphere and the river discharge due to the melting of glaciers on land resulting in enhanced nutrient inputs to the surface ocean and NPP. To examine the balance between these two processes, spatial and temporal variations in the rate of warming, NPP, aerosol optical depth (AOD), and sea surface salinity (SSS) were studied between 2001 and 2020 in the northern Indian Ocean. Strong heterogeneity in the warming of the sea surface was observed in the northern Indian Ocean with significant warming in the south of 12°N. Insignificant trends in warming were observed in the northern Arabian Sea (AS), north of 12°N, during winter and fall, and western Bay of Bengal (BoB) during winter, spring, and fall associated with higher levels of anthropogenic AOD (AAOD) due to a reduction in incoming solar radiation. The decline in NPP was observed in the south of 12°N in both AS and BoB and correlated inversely with SST suggesting that a weak supply of nutrients due to upper ocean stratification controlled NPP. Despite warming, the weak trends in NPP in the north of 12°N were associated with higher AAOD levels and their rate of increase suggesting that the deposition of nutrients from the aerosols seems to be compensating for declining trends due to warming. The decrease in sea surface salinity confirmed an increase in river discharge, and nutrient supply led to weak NPP trends in the northern BoB. This study suggests that the enhanced atmospheric aerosols and river discharge played a significant role in warming and changes in NPP in the northern Indian Ocean, and these parameters must be included in the ocean biogeochemical models for accurate prediction of possible changes in the upper ocean biogeochemistry in the future due to climate change.


Asunto(s)
Atmósfera , Ecosistema , Océano Índico , Estaciones del Año , Aerosoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA