Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 143(15): 2791-802, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27317808

RESUMEN

The pattern of the Drosophila melanogaster adult wing is heavily influenced by the expression of proteins that dictate cell fate decisions between intervein and vein during development. dSRF (Blistered) expression in specific regions of the larval wing disc promotes intervein cell fate, whereas EGFR activity promotes vein cell fate. Here, we report that the chromatin-organizing protein CAP-D3 acts to dampen dSRF levels at the anterior/posterior boundary in the larval wing disc, promoting differentiation of cells into the anterior crossvein. CAP-D3 represses KNOT expression in cells immediately adjacent to the anterior/posterior boundary, thus blocking KNOT-mediated repression of EGFR activity and preventing cell death. Maintenance of EGFR activity in these cells depresses dSRF levels in the neighboring anterior crossvein progenitor cells, allowing them to differentiate into vein cells. These findings uncover a novel transcriptional regulatory network influencing Drosophila wing vein development, and are the first to identify a Condensin II subunit as an important regulator of EGFR activity and cell fate determination in vivo.


Asunto(s)
Cromosomas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Inmunoprecipitación de Cromatina , Cromosomas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hibridación in Situ , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
2.
IUBMB Life ; 70(8): 718-731, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29934986

RESUMEN

Leaves are the most conspicuous planar organs in plants, designed for efficient capture of sunlight and its conversion to energy that is channeled into sustaining the entire biosphere. How a few founder cells derived from the shoot apical meristem give rise to diverse leaf forms has interested naturalists and developmental biologists alike. At the heart of leaf morphogenesis lie two simple cellular processes, division and expansion, that are spatially and temporally segregated in a developing leaf. In leaves of dicot model species, cell division occurs predominantly at the base, concomitant with the expansion and differentiation of cells at the tip of the lamina that drives increase in leaf surface area. The timing of the transition from one cell fate (division) to the other (expansion) within a growing leaf lamina is a critical determinant of final leaf shape, size, complexity and flatness. The TCP proteins, unique to plant kingdom, are sequence-specific DNA-binding transcription factors that control several developmental and physiological traits. A sub-group of class II TCPs, called CINCINNATA-like TCPs (CIN-TCPs henceforth), are key regulators of the timing of the transition from division to expansion in dicot leaves. The current review highlights recent advances in our understanding of how the pattern of CIN-TCP activity is translated to the dynamic spatio-temporal control of cell-fate transition through the transactivation of cell-cycle regulators, growth-repressing microRNAs, and interactions with the chromatin remodeling machinery to modulate phytohormone responses. Unravelling how environmental inputs influence CIN-TCP-mediated growth control is a challenge for future studies. © 2018 IUBMB Life, 70(8):718-731, 2018.


Asunto(s)
Arabidopsis/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular/genética , División Celular/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Regiones Promotoras Genéticas
3.
PLoS Genet ; 9(10): e1003879, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204294

RESUMEN

Retrotransposon sequences are positioned throughout the genome of almost every eukaryote that has been sequenced. As mobilization of these elements can have detrimental effects on the transcriptional regulation and stability of an organism's genome, most organisms have evolved mechanisms to repress their movement. Here, we identify a novel role for the Drosophila melanogaster Condensin II subunit, dCAP-D3 in preventing the mobilization of retrotransposons located in somatic cell euchromatin. dCAP-D3 regulates transcription of euchromatic gene clusters which contain or are proximal to retrotransposon sequence. ChIP experiments demonstrate that dCAP-D3 binds to these loci and is important for maintaining a repressed chromatin structure within the boundaries of the retrotransposon and for repressing retrotransposon transcription. We show that dCAP-D3 prevents accumulation of double stranded DNA breaks within retrotransposon sequence, and decreased dCAP-D3 levels leads to a precise loss of retrotransposon sequence at some dCAP-D3 regulated gene clusters and a gain of sequence elsewhere in the genome. Homologous chromosomes exhibit high levels of pairing in Drosophila somatic cells, and our FISH analyses demonstrate that retrotransposon-containing euchromatic loci are regions which are actually less paired than euchromatic regions devoid of retrotransposon sequences. Decreased dCAP-D3 expression increases pairing of homologous retrotransposon-containing loci in tissue culture cells. We propose that the combined effects of dCAP-D3 deficiency on double strand break levels, chromatin structure, transcription and pairing at retrotransposon-containing loci may lead to 1) higher levels of homologous recombination between repeats flanking retrotransposons in dCAP-D3 deficient cells and 2) increased retrotransposition. These findings identify a novel role for the anti-pairing activities of dCAP-D3/Condensin II and uncover a new way in which dCAP-D3/Condensin II influences local chromatin structure to help maintain genome stability.


Asunto(s)
Adenosina Trifosfatasas/genética , Cromosomas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Complejos Multiproteicos/genética , Retroelementos/genética , Adenosina Trifosfatasas/biosíntesis , Animales , Estructuras Cromosómicas/genética , Estructuras Cromosómicas/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/biosíntesis , Diploidia , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster , Eucromatina/genética , Regulación de la Expresión Génica , Inestabilidad Genómica , Complejos Multiproteicos/biosíntesis , Análisis de Secuencia por Matrices de Oligonucleótidos
4.
Plant J ; 67(4): 595-607, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21518050

RESUMEN

Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Diferenciación Celular , Proliferación Celular , Tamaño de la Célula , Supervivencia Celular , Fertilidad , Flores/crecimiento & desarrollo , Flores/fisiología , Proteína Vmw65 de Virus del Herpes Simple/genética , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/fisiología , Mutación , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/fisiología , Polen/crecimiento & desarrollo , Polen/fisiología , Proteínas Recombinantes de Fusión , Reproducción , Factores de Tiempo , Factores de Transcripción/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Front Plant Sci ; 13: 825341, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273626

RESUMEN

Post-mitotic cell growth is a key process in plant growth and development. Cell expansion drives major growth during morphogenesis and is influenced by both endogenous factors and environmental stimuli. Though both isotropic and anisotropic cell growth can contribute to organ size and shape at different degrees, anisotropic cell growth is more likely to contribute to shape change. While much is known about the mechanisms that increase cellular turgor and cell-wall biomass during expansion, the genetic factors that regulate these processes are less studied. In the past quarter of a century, the role of the CINCINNATA-like TCP (CIN-TCP) transcription factors has been well documented in regulating diverse aspects of plant growth and development including flower asymmetry, plant architecture, leaf morphogenesis, and plant maturation. The molecular activity of the CIN-TCP proteins common to these biological processes has been identified as their ability to suppress cell proliferation. However, reports on their role regulating post-mitotic cell growth have been scanty, partly because of functional redundancy among them. In addition, it is difficult to tease out the effect of gene activity on cell division and expansion since these two processes are linked by compensation, a phenomenon where perturbation in proliferation is compensated by an opposite effect on cell growth to keep the final organ size relatively unaltered. Despite these technical limitations, recent genetic and growth kinematic studies have shown a distinct role of CIN-TCPs in promoting cellular growth in cotyledons and hypocotyls, the embryonic organs that grow solely by cell expansion. In this review, we highlight these recent advances in our understanding of how CIN-TCPs promote cell growth.

6.
Biochem Biophys Res Commun ; 410(2): 276-81, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21658370

RESUMEN

The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1→S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1→S arrest is discussed.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , División Celular/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Factores de Transcripción/fisiología , Proteínas de Arabidopsis/genética , Fase G1/genética , Fase S/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
7.
Curr Opin Plant Biol ; 47: 22-31, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30223186

RESUMEN

Organ elaboration in plants occurs almost exclusively by an increase in cell number and size. Leaves, the planar lateral appendages of plants, are no exception. Forward and reverse genetic approaches have identified several genes whose role in leaf morphogenesis has been inferred from their primary effect on cell number and size, thereby distinguishing them as either promoters or inhibitors of cell proliferation and expansion. While such classification is useful in studying size control, a similar link between genes and shape generation is poorly understood. Computational modelling can provide a conceptual framework to re-evaluate the known genetic information and assign specific morphogenetic roles to the transcription factor-encoding genes. Here we discuss recent advances in our understanding of the roles of transcription factors in the planar growth of leaf lamina in two orthogonal dimensions.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Tipificación del Cuerpo , Modelos Biológicos , Factores de Transcripción
8.
Plant Signal Behav ; 6(10): 1440-3, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21904111

RESUMEN

TCP4 and related members of class II TCP genes regulate leaf morphogenesis. We earlier demonstrated that level of TCP4 activity determines leaf size and aspects of plant maturity. The mechanism of TCP function and their target genes remain unidentified, limiting our understanding of TCP-mediated growth control. As leaf growth is influenced simultaneously by multiple phytohormones, we have studied if TCP4 interacts with any of the hormone-response pathways. Our analyses indicate a role for auxin, gibberellic acid and abscisic acid in TCP4-mediated control of leaf growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Acetatos/farmacología , Arabidopsis/genética , Ciclopentanos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Ácidos Indolacéticos/farmacología , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA