Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 100, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867287

RESUMEN

BACKGROUND: In-home rehabilitation systems are a promising, potential alternative to conventional therapy for stroke survivors. Unfortunately, physiological differences between participants and sensor displacement in wearable sensors pose a significant challenge to classifier performance, particularly for people with stroke who may encounter difficulties repeatedly performing trials. This makes it challenging to create reliable in-home rehabilitation systems that can accurately classify gestures. METHODS: Twenty individuals who suffered a stroke performed seven different gestures (mass flexion, mass extension, wrist volar flexion, wrist dorsiflexion, forearm pronation, forearm supination, and rest) related to activities of daily living. They performed these gestures while wearing EMG sensors on the forearm, as well as FMG sensors and an IMU on the wrist. We developed a model based on prototypical networks for one-shot transfer learning, K-Best feature selection, and increased window size to improve model accuracy. Our model was evaluated against conventional transfer learning with neural networks, as well as subject-dependent and subject-independent classifiers: neural networks, LGBM, LDA, and SVM. RESULTS: Our proposed model achieved 82.2% hand-gesture classification accuracy, which was better (P<0.05) than one-shot transfer learning with neural networks (63.17%), neural networks (59.72%), LGBM (65.09%), LDA (63.35%), and SVM (54.5%). In addition, our model performed similarly to subject-dependent classifiers, slightly lower than SVM (83.84%) but higher than neural networks (81.62%), LGBM (80.79%), and LDA (74.89%). Using K-Best features improved the accuracy in 3 of the 6 classifiers used for evaluation, while not affecting the accuracy in the other classifiers. Increasing the window size improved the accuracy of all the classifiers by an average of 4.28%. CONCLUSION: Our proposed model showed significant improvements in hand-gesture recognition accuracy in individuals who have had a stroke as compared with conventional transfer learning, neural networks and traditional machine learning approaches. In addition, K-Best feature selection and increased window size can further improve the accuracy. This approach could help to alleviate the impact of physiological differences and create a subject-independent model for stroke survivors that improves the classification accuracy of wearable sensors. TRIAL REGISTRATION NUMBER: The study was registered in Chinese Clinical Trial Registry with registration number CHiCTR1800017568 in 2018/08/04.


Asunto(s)
Gestos , Mano , Redes Neurales de la Computación , Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Mano/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Anciano , Aprendizaje Automático , Transferencia de Experiencia en Psicología/fisiología , Adulto , Electromiografía , Dispositivos Electrónicos Vestibles
2.
Sensors (Basel) ; 21(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34770255

RESUMEN

The large number of poststroke recovery patients poses a burden on rehabilitation centers, hospitals, and physiotherapists. The advent of rehabilitation robotics and automated assessment systems can ease this burden by assisting in the rehabilitation of patients with a high level of recovery. This assistance will enable medical professionals to either better provide for patients with severe injuries or treat more patients. It also translates into financial assistance as well in the long run. This paper demonstrated an automated assessment system for in-home rehabilitation utilizing a data glove, a mobile application, and machine learning algorithms. The system can be used by poststroke patients with a high level of recovery to assess their performance. Furthermore, this assessment can be sent to a medical professional for supervision. Additionally, a comparison between two machine learning classifiers was performed on their assessment of physical exercises. The proposed system has an accuracy of 85% (±5.1%) with careful feature and classifier selection.


Asunto(s)
Mano , Robótica , Algoritmos , Humanos , Aprendizaje Automático , Aprendizaje Automático Supervisado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA