Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Microbiol ; 106(2): 304-318, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28792086

RESUMEN

Bacterial cell division involves the dynamic assembly of a diverse set of proteins that coordinate the invagination of the cell membrane and synthesis of cell wall material to create the new cell poles of the separated daughter cells. Penicillin-binding protein PBP 2B is a key cell division protein in Bacillus subtilis proposed to have a specific catalytic role in septal wall synthesis. Unexpectedly, we find that a catalytically inactive mutant of PBP 2B supports cell division, but in this background the normally dispensable PBP 3 becomes essential. Phenotypic analysis of pbpC mutants (encoding PBP 3) shows that PBP 2B has a crucial structural role in assembly of the division complex, independent of catalysis, and that its biochemical activity in septum formation can be provided by PBP 3. Bioinformatic analysis revealed a close sequence relationship between PBP 3 and Staphylococcus aureus PBP 2A, which is responsible for methicillin resistance. These findings suggest that mechanisms for rescuing cell division when the biochemical activity of PBP 2B is perturbed evolved prior to the clinical use of ß-lactams.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Penicilinas/metabolismo , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , División Celular , Farmacorresistencia Bacteriana/genética , Genes Bacterianos/efectos de los fármacos , Resistencia a la Meticilina/genética , Proteínas de Unión a las Penicilinas/genética , Penicilinas/farmacología , Peptidil Transferasas/genética , Staphylococcus aureus/genética , beta-Lactamas/metabolismo
2.
Proc Natl Acad Sci U S A ; 111(22): 8197-202, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24821816

RESUMEN

Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer. Growing and dividing cells expand their PG layer by using membrane-anchored PG synthases, which are guided by dynamic cytoskeletal elements. In Escherichia coli, growth of the mainly single-layered PG is also regulated by outer membrane-anchored lipoproteins. The lipoprotein LpoB is required for the activation of penicillin-binding protein (PBP) 1B, which is a major, bifunctional PG synthase with glycan chain polymerizing (glycosyltransferase) and peptide cross-linking (transpeptidase) activities. Here, we report the structure of LpoB, determined by NMR spectroscopy, showing an N-terminal, 54-aa-long flexible stretch followed by a globular domain with similarity to the N-terminal domain of the prevalent periplasmic protein TolB. We have identified the interaction interface between the globular domain of LpoB and the noncatalytic UvrB domain 2 homolog domain of PBP1B and modeled the complex. Amino acid exchanges within this interface weaken the PBP1B-LpoB interaction, decrease the PBP1B stimulation in vitro, and impair its function in vivo. On the contrary, the N-terminal flexible stretch of LpoB is required to stimulate PBP1B in vivo, but is dispensable in vitro. This supports a model in which LpoB spans the periplasm to interact with PBP1B and stimulate PG synthesis.


Asunto(s)
Apolipoproteínas B/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Apolipoproteínas B/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Resonancia Magnética Nuclear Biomolecular , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/biosíntesis , Peptidoglicano Glicosiltransferasa/química , Periplasma/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química
3.
Cell Surf ; 7: 100053, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34036206

RESUMEN

Bacteria encase their cytoplasmic membrane with peptidoglycan (PG) to maintain the shape of the cell and protect it from bursting. The enlargement of the PG layer is facilitated by the coordinated activities of PG synthesising and -cleaving enzymes. In Escherichia coli, the cytoplasmic membrane-bound lytic transglycosylase MltG associates with PG synthases and was suggested to terminate the polymerisation of PG glycan strands. Using pull-down and surface plasmon resonance, we detected interactions between MltG from Bacillus subtilis and two PG synthases; the class A PBP1 and the class B PBP2B. Using in vitro PG synthesis assays with radio-labelled or fluorophore-labelled B. subtilis-type and/or E. coli-type lipid II, we showed that both, BsMltG and EcMltG, are lytic tranglycosylases and that their activity is higher during ongoing glycan strand polymerisation. MltG competed with the transpeptidase activity of class A PBPs, but had no effect on their glycosyltransferase activity, and produced glycan strands with a length of 7 disaccharide units from cleavage in the nascent strands. We hypothesize that MltG cleaves the nascent strands to produce short glycan strands that are used in the cell for a yet unknown process.

4.
Sci Rep ; 10(1): 17910, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087775

RESUMEN

The peptidoglycan layer is responsible for maintaining bacterial cell shape and permitting cell division. Cell wall growth is facilitated by peptidoglycan synthases and hydrolases and is potentially modulated by components of the central carbon metabolism. In Bacillus subtilis, UgtP synthesises the glucolipid precursor for lipoteichoic acid and has been suggested to function as a metabolic sensor governing cell size. Here we show that ugtP mutant cells have increased levels of cell wall precursors and changes in their peptidoglycan that suggest elevated DL-endopeptidase activity. The additional deletion of lytE, encoding a DL-endopeptidase important for cell elongation, in the ugtP mutant background produced cells with severe shape defects. Interestingly, the ugtP lytE mutant recovered normal rod-shape by acquiring mutations that decreased the expression of the peptidoglycan synthase PBP1. Together our results suggest that cells lacking ugtP must re-adjust the balance between peptidoglycan synthesis and hydrolysis to maintain proper cell morphology.


Asunto(s)
Bacillus subtilis/citología , Bacillus subtilis/metabolismo , Forma de la Célula/genética , Forma de la Célula/fisiología , Peptidoglicano/biosíntesis , Peptidoglicano/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , División Celular , Pared Celular/metabolismo , Endopeptidasas/metabolismo , Hidrólisis , Lipopolisacáridos/metabolismo , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Ácidos Teicoicos/metabolismo
5.
Cell Rep ; 25(1): 57-67.e5, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282038

RESUMEN

Tuberculosis claims >1 million lives annually, and its causative agent Mycobacterium tuberculosis is a highly successful pathogen. Protein kinase B (PknB) is reported to be critical for mycobacterial growth. Here, we demonstrate that PknB-depleted M. tuberculosis can replicate normally and can synthesize peptidoglycan in an osmoprotective medium. Comparative phosphoproteomics of PknB-producing and PknB-depleted mycobacteria identify CwlM, an essential regulator of peptidoglycan synthesis, as a major PknB substrate. Our complementation studies of a cwlM mutant of M. tuberculosis support CwlM phosphorylation as a likely molecular basis for PknB being essential for mycobacterial growth. We demonstrate that growing mycobacteria produce two forms of CwlM: a non-phosphorylated membrane-associated form and a PknB-phosphorylated cytoplasmic form. Furthermore, we show that the partner proteins for the phosphorylated and non-phosphorylated forms of CwlM are FhaA, a fork head-associated domain protein, and MurJ, a proposed lipid II flippase, respectively. From our results, we propose a model in which CwlM potentially regulates both the biosynthesis of peptidoglycan precursors and their transport across the cytoplasmic membrane.


Asunto(s)
Mycobacterium tuberculosis/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Secuencia de Aminoácidos , Pared Celular/enzimología , Mycobacterium tuberculosis/citología , Mycobacterium tuberculosis/crecimiento & desarrollo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA