RESUMEN
The nation-wide lockdowns imposed in India during March--May 2020 (in four phases) to curb the spread of the novel Corona virus, greatly enhanced the near-surface air-quality due to lowering of industrial, transport and human activities. The present study focuses on the changes in the vertical structure of aerosol concentration and how those changes impacted radiation balance, the planetary boundary layer (PBL) height and surface meteorological parameters. Instrumented tower and Ceilometer measurements made at Gadanki (13.45°N, 79.18°E), located in a rural environment, coupled with satellite-derived Aerosol Optical Depth (AOD) data have been used to understand the changes in lockdown period. Significant reduction in backscatter density during the lockdown compared to 2019 indicates that aerosol reduction during the lockdown is not only limited to the surface, rather observed in the entire PBL. Except for the fourth phase of lockdown during which several relaxations have been given for vehicular movement and other anthropogenic activities, the reduction in backscatter density is seen in all phases of lockdown. However, the reduction is prominently seen in the second and third phases. The AOD also reduced by 40% around Gadanki, comparable to that of in urban regions. Due to the reduction in aerosols during the lockdown period, the insolation increases by 60 Wm-2, which is expected to increase the temperature. However, the increased loss of long-wave radiation (due to reduction in trapping gases) and more rain events during the lockdown period decreased the temperature by ~1 °C. Measurements also suggest that the most of net radiation is partitioned into the latent heat flux increasing the humidity and lowering the PBL height (due to reduced strength of thermals and sensible heat flux).
RESUMEN
Eventhough the role of BRCA1/2 in hereditary prostatic cancer is being unleashed at a rapid rate; their optimal clinical management remains undefined. Cancer stem cells are thought to be responsible for cancer chemoresistance and relapse, thus they represent a significant concern for cancer prognosis and therapy. In this study, we have analyzed the effect of Plumbagin (PB) and structurally related naphthaquinones on BRCA1/2 silenced prostate cancer cells and the ability of PB to target stem cells. Our cell proliferation studies showed that both PC-3 and DU145 cells were more sensitive to PB, though all the compounds induced mitochondrial potential loss, DNA fragmentation and morphological changes which are indicative of apoptosis. Both BRCA1/2 siRNA transfected PC-3 and DU145 cells exhibited increased sensitivity to PB. Gene expression profiling post PB treatment in BRCA1/2 silenced cells revealed that PB has a putative role in tumor suppression in BRCA defective cancers. Using flow cytometric analysis we have proved that PB has the putative ability to directly target CSCs. Overall studies suggest that PB's antitumour mechanisms holds promise for novel therapeutic approaches against BRCA mutated cancers as well as CSCs.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Proteína BRCA1/genética , Proteína BRCA2/genética , Naftoquinonas/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patologíaRESUMEN
Water represents the most important component in the white spot syndrome virus (WSSV) transmission pathway in aquaculture, yet there is very little information. Detection of viruses in water is a challenge, since their counts will often be too low to be detected by available methods such as polymerase chain reaction (PCR). In order to overcome this difficulty, viruses in water have to be concentrated from large volumes of water prior to detection. In this study, a total of 19 water samples from aquaculture ecosystem comprising 3 creeks, 10 shrimp culture ponds, 3 shrimp broodstock tanks and 2 larval rearing tanks of shrimp hatcheries and a sample from a hatchery effluent treatment tank were subjected to concentration of viruses by ultrafiltration (UF) using tangential flow filtration (TFF). Twenty to 100l of water from these sources was concentrated to a final volume of 100mL (200-1000 fold). The efficiency of recovery of WSSV by TFF ranged from 7.5 to 89.61%. WSSV could be successfully detected by PCR in the viral concentrates obtained from water samples of three shrimp culture ponds, one each of the shrimp broodstock tank, larval rearing tank, and the shrimp hatchery effluent treatment tank with WSSV copy numbers ranging from 6 to 157mL(-1) by quantitative real time PCR. The ultrafiltration virus concentration technique enables efficient detection of shrimp viral pathogens in water from aquaculture facilities. It could be used as an important tool to understand the efficacy of biosecurity protocols adopted in the aquaculture facility and to carry out epidemiological investigations of aquatic viral pathogens.