RESUMEN
High-level athletes are always looking at ways to maximize training adaptations for competition performance, and using altered environmental conditions to achieve this outcome has become increasingly popular by elite athletes. Furthermore, a series of potential nutrition and hydration interventions may also optimize the adaptation to altered environments. Altitude training was first used to prepare for competition at altitude, and it still is today; however, more often now, elite athletes embark on a series of altitude training camps to try to improve sea-level performance. Similarly, the use of heat acclimation/acclimatization to optimize performance in hot/humid environmental conditions is a common practice by high-level athletes and is well supported in the scientific literature. More recently, the use of heat training to improve exercise capacity in temperate environments has been investigated and appears to have positive outcomes. This consensus statement will detail the use of both heat and altitude training interventions to optimize performance capacities in elite athletes in both normal environmental conditions and extreme conditions (hot and/or high), with a focus on the importance of nutritional strategies required in these extreme environmental conditions to maximize adaptations conducive to competitive performance enhancement.
Asunto(s)
Adaptación Fisiológica , Altitud , Rendimiento Atlético/fisiología , Calor , Acondicionamiento Físico Humano/métodos , Atletas , Humanos , Fenómenos Fisiológicos en la Nutrición DeportivaRESUMEN
The International Association of Athletics Federations recognizes the importance of nutritional practices in optimizing an Athlete's well-being and performance. Although Athletics encompasses a diverse range of track-and-field events with different performance determinants, there are common goals around nutritional support for adaptation to training, optimal performance for key events, and reducing the risk of injury and illness. Periodized guidelines can be provided for the appropriate type, amount, and timing of intake of food and fluids to promote optimal health and performance across different scenarios of training and competition. Some Athletes are at risk of relative energy deficiency in sport arising from a mismatch between energy intake and exercise energy expenditure. Competition nutrition strategies may involve pre-event, within-event, and between-event eating to address requirements for carbohydrate and fluid replacement. Although a "food first" policy should underpin an Athlete's nutrition plan, there may be occasions for the judicious use of medical supplements to address nutrient deficiencies or sports foods that help the athlete to meet nutritional goals when it is impractical to eat food. Evidence-based supplements include caffeine, bicarbonate, beta-alanine, nitrate, and creatine; however, their value is specific to the characteristics of the event. Special considerations are needed for travel, challenging environments (e.g., heat and altitude); special populations (e.g., females, young and masters athletes); and restricted dietary choice (e.g., vegetarian). Ideally, each Athlete should develop a personalized, periodized, and practical nutrition plan via collaboration with their coach and accredited sports nutrition experts, to optimize their performance.
Asunto(s)
Atletas , Necesidades Nutricionales , Ciencias de la Nutrición y del Deporte , Consenso , Dieta , Suplementos Dietéticos , Ingestión de Energía , Metabolismo Energético , Humanos , Fenómenos Fisiológicos en la Nutrición DeportivaRESUMEN
The questionable efficacy of Live High Train High altitude training (LHTH) is compounded by minimal training quantification in many studies. We sought to quantify the training load (TL) periodization in a cohort of elite runners completing LHTH immediately prior to competition. Eight elite runners (6 males, 2 females) with a VÌO2peak of 70 ± 4 mL·kg-1·min-1 were monitored during 4 weeks of sea-level training, then 3-4 weeks LHTH in preparation for sea-level races following descent to sea-level. TL was calculated using the session rating of perceived exertion (sRPE) method, whereby duration of each training session was multiplied by its sRPE, then summated to give weekly TL. Performance was assessed in competition at sea-level before, and within 8 days of completing LHTH, with runners competing in 800 m (n = 1, 1500 m/mile (n = 6) and half-marathon (n = 1). Haemoglobin mass (Hbmass) via CO rebreathing and running economy (RE) were assessed pre and post LHTH. Weekly TL during the first 2 weeks at altitude increased by 75% from preceding sea-level training (p = 0.0004, d = 1.65). During the final week at altitude, TL was reduced by 43% compared to the previous weeks (p = 0.002; d = 1.85). The ratio of weekly TL to weekly training volume increased by 17% at altitude (p = 0.009; d = 0.91) compared to prior sea-level training. Hbmass increased by 5% from pre- to post-LHTH (p = 0.006, d = 0.20). Seven athletes achieved lifetime personal best performances within 8 days post-altitude (overall improvement 1.1 ± 0.7%, p = 0.2, d = 0.05). Specific periodization of training, including large increases in training load upon arrival to altitude (due to increased training volume and greater stress of training in hypoxia) and tapering, were observed during LHTH in elite runners prior to personal best performances. Periodization should be individualized and align with timing of competition post-altitude.
Asunto(s)
Altitud , Rendimiento Atlético/fisiología , Periodicidad , Acondicionamiento Físico Humano/métodos , Carrera/fisiología , Adaptación Fisiológica , Adulto , Atletas , Estudios de Cohortes , Femenino , Hemoglobinas/análisis , Humanos , Masculino , Consumo de Oxígeno , Adulto JovenRESUMEN
High altitude exposure can increase resting metabolic rate (RMR) and induce weight loss in obese populations, but there is a lack of research regarding RMR in athletes at moderate elevations common to endurance training camps. The present study aimed to determine whether 4 weeks of classical altitude training affects RMR in middle-distance runners. Ten highly trained athletes were recruited for 4 weeks of endurance training undertaking identical programs at either 2200m in Flagstaff, Arizona (ALT, n = 5) or 600m in Canberra, Australia (CON, n = 5). RMR, anthropometry, energy intake, and hemoglobin mass (Hbmass) were assessed pre- and posttraining. Weekly run distance during the training block was: ALT 96.8 ± 18.3km; CON 103.1 ± 5.6km. A significant interaction for Time*Group was observed for absolute (kJ.day-1) (F-statistic, p-value: F(1,8)=13.890, p = .01) and relative RMR (F(1,8)=653.453, p = .003) POST-training. No significant changes in anthropometry were observed in either group. Energy intake was unchanged (mean ± SD of difference, ALT: 195 ± 3921kJ, p = .25; CON: 836 ± 7535kJ, p = .75). A significant main effect for time was demonstrated for total Hbmass (g) (F(1,8)=13.380, p = .01), but no significant interactions were observed for either variable [Total Hbmass (g): F(1,8)=1.706, p = .23; Relative Hbmass (g.kg-1): F(1,8)=0.609, p = .46]. These novel findings have important practical application to endurance athletes routinely training at moderate altitude, and those seeking to optimize energy management without compromising training adaptation. Altitude exposure may increase RMR and enhance training adaptation,. During training camps at moderate altitude, an increased energy intake is likely required to support an increased RMR and provide sufficient energy for training and performance.
Asunto(s)
Altitud , Atletas , Metabolismo Basal , Acondicionamiento Físico Humano/métodos , Carrera , Adolescente , Adulto , Antropometría , Arizona , Rendimiento Atlético , Australia , Femenino , Hemoglobinas/metabolismo , Humanos , Masculino , Consumo de Oxígeno , Resistencia Física , Adulto JovenRESUMEN
The influence of low natural altitudes (< 2000 m) on erythropoietic adaptation is currently unclear, with current recommendations indicating that such low altitudes may be insufficient to stimulate significant increases in haemoglobin mass (Hbmass). As such, the purpose of this study was to determine the influence of 3 weeks of live high, train high exposure (LHTH) at low natural altitude (i.e. 1800 m) on Hbmass, red blood cell count and iron profile. A total of 16 elite or well-trained runners were assigned into either a LHTH (n = 8) or CONTROL (n = 8) group. Venous blood samples were drawn prior to, at 2 weeks and at 3 weeks following exposure. Hbmass was measured in duplicate prior to exposure and at 2 weeks and at 3 weeks following exposure via carbon monoxide rebreathing. The percentage change in Hbmass from baseline was significantly greater in LHTH, when compared with the CONTROL group at 2 (3.1% vs 0.4%; p = 0.01;) and 3 weeks (3.0% vs -1.1%; p < 0.02, respectively) following exposure. Haematocrit was greater in LHTH than CONTROL at 2 (p = 0.01) and 3 weeks (p = 0.04) following exposure. No significant interaction effect was observed for haemoglobin concentration (p = 0.06), serum ferritin (p = 0.43), transferrin (p = 0.52) or reticulocyte percentage (p = 0.16). The results of this study indicate that three week of natural classic (i.e. LHTH) low altitude exposure (1800 m) results in a significant increase in Hbmass of elite distance runners, which is likely due to the continuous exposure to hypoxia. Key pointsTwo and three weeks of LHTH altitude exposure (1800 m) results in a significant increase in HbmassLHTH altitude exposure increased Hbmass by 3.1% after 2 weeks, and 3.0% after 3 weeks of exposureLHTH altitude exposure may be a practical method to increase Hbmass in well-trained athletes.
RESUMEN
This study examined effects of low altitude training and a live-high: train-low protocol (combining both natural and simulated modalities) on haemoglobin mass (Hbmass), maximum oxygen consumption (VO2max), time to exhaustion, and submaximal exercise measures. Eighteen elite-level race-walkers were assigned to one of two experimental groups; lowHH (low Hypobaric Hypoxia: continuous exposure to 1380 m for 21 consecutive days; n = 10) or a combined low altitude training and nightly Normobaric Hypoxia (lowHH+NHnight: living and training at 1380 m, plus 9 h.night(-1) at a simulated altitude of 3000 m using hypoxic tents; n = 8). A control group (CON; n = 10) lived and trained at 600 m. Measurement of Hbmass, time to exhaustion and VO2max was performed before and after the training intervention. Paired samples t-tests were used to assess absolute and percentage change pre and post-test differences within groups, and differences between groups were assessed using a one-way ANOVA with least significant difference post-hoc testing. Statistical significance was tested at p < 0.05. There was a 3.7% increase in Hbmass in lowHH+NHnight compared with CON (p = 0.02). In comparison to baseline, Hbmass increased by 1.2% (±1.4%) in the lowHH group, 2.6% (±1.8%) in lowHH+NHnight, and there was a decrease of 0.9% (±4.9%) in CON. VO2max increased by ~4% within both experimental conditions but was not significantly greater than the 1% increase in CON. There was a ~9% difference in pre and post-intervention values in time to exhaustion after lowHH+NH-night (p = 0.03) and a ~8% pre to post-intervention difference (p = 0.006) after lowHH only. We recommend low altitude (1380 m) combined with sleeping in altitude tents (3000 m) as one effective alternative to traditional altitude training methods, which can improve Hbmass. Key pointsIn some countries, it may not be possible to perform classical altitude training effectively, due to the low elevation at altitude training venues. An additional hypoxic stimulus can be provided by simulating higher altitudes overnight, using altitude tents.Three weeks of combined (living and training at 1380 m) and simulated altitude exposure (at 3000 m) can improve haemoglobin mass by over 3% in comparison to control values, and can also improve time to exhaustion by ~9% in comparison to baseline.We recommend that, in the context of an altitude training camp at low altitudes (~1400 m) the addition of a relatively short exposure to simulated altitudes of 3000 m can elicit physiological and performance benefits, without compromise to training intensity or competition preparation. However, the benefits will not be greater than conducting a traditional altitude training camp at low altitudes.
RESUMEN
BACKGROUND: Endurance athletes have been using altitude training for decades to improve near sea-level performance. The predominant mechanism is thought to be accelerated erythropoiesis increasing haemoglobin mass (Hb(mass)) resulting in a greater maximal oxygen uptake (VO2(max)). Not all studies have shown a proportionate increase in VO2(max) as a result of increased Hb(mass). The aim of this study was to determine the relationship between the two parameters in a large group of endurance athletes after altitude training. METHODS: 145 elite endurance athletes (94 male and 51 female) who participated in various altitude studies as altitude or control participants were used for the analysis. Participants performed Hb(mass) and VO2(max) testing before and after intervention. RESULTS: For the pooled data, the correlation between per cent change in Hb(mass) and per cent change in VO2(max) was significant (p<0.0001, r(2)=0.15), with a slope (95% CI) of 0.48 (0.30 to 0.67) intercept free to vary and 0.62 (0.46 to 0.77) when constrained through the origin. When separated, the correlations were significant for the altitude and control groups, with the correlation being stronger for the altitude group (slope of 0.57 to 0.72). CONCLUSIONS: With high statistical power, we conclude that altitude training of endurance athletes will result in an increase in VO2(max) of more than half the magnitude of the increase in Hb(mass), which supports the use of altitude training by athletes. But race performance is not perfectly related to relative VO2(max), and other non-haematological factors altered from altitude training, such as running economy and lactate threshold, may also be beneficial to performance.
Asunto(s)
Altitud , Rendimiento Atlético/fisiología , Hemoglobinas/metabolismo , Hipoxia/fisiopatología , Ciclismo/fisiología , Estudios de Casos y Controles , Tolerancia al Ejercicio/fisiología , Femenino , Humanos , Hipoxia/metabolismo , Masculino , Consumo de Oxígeno/fisiología , Esfuerzo Físico/fisiología , Carrera/fisiología , Natación/fisiología , Caminata/fisiologíaRESUMEN
AIM: The purpose of this study was to determine the changes in running mechanics that occur when highly trained runners run barefoot and in a minimalist shoe, and specifically if running in a minimalist shoe replicates barefoot running. METHODS: Ground reaction force data and kinematics were collected from 22 highly trained runners during overground running while barefoot and in three shod conditions (minimalist shoe, racing flat and the athlete's regular shoe). Three-dimensional net joint moments and subsequent net powers and work were computed using Newton-Euler inverse dynamics. Joint kinematic and kinetic variables were statistically compared between barefoot and shod conditions using a multivariate analysis of variance for repeated measures and standardised mean differences calculated. RESULTS: There were significant differences between barefoot and shod conditions for kinematic and kinetic variables at the knee and ankle, with no differences between shod conditions. Barefoot running demonstrated less knee flexion during midstance, an 11% decrease in the peak internal knee extension and abduction moments and a 24% decrease in negative work done at the knee compared with shod conditions. The ankle demonstrated less dorsiflexion at initial contact, a 14% increase in peak power generation and a 19% increase in the positive work done during barefoot running compared with shod conditions. CONCLUSIONS: Barefoot running was different to all shod conditions. Barefoot running changes the amount of work done at the knee and ankle joints and this may have therapeutic and performance implications for runners.
Asunto(s)
Carrera/fisiología , Zapatos , Adulto , Fenómenos Biomecánicos , Diseño de Equipo , Femenino , Pie/fisiología , Cadera/fisiología , Humanos , Rodilla/fisiología , MasculinoRESUMEN
OBJECTIVE: To characterise the time course of changes in haemoglobin mass (Hbmass) in response to altitude exposure. METHODS: This meta-analysis uses raw data from 17 studies that used carbon monoxide rebreathing to determine Hbmass prealtitude, during altitude and postaltitude. Seven studies were classic altitude training, eight were live high train low (LHTL) and two mixed classic and LHTL. Separate linear-mixed models were fitted to the data from the 17 studies and the resultant estimates of the effects of altitude used in a random effects meta-analysis to obtain an overall estimate of the effect of altitude, with separate analyses during altitude and postaltitude. In addition, within-subject differences from the prealtitude phase for altitude participant and all the data on control participants were used to estimate the analytical SD. The 'true' between-subject response to altitude was estimated from the within-subject differences on altitude participants, between the prealtitude and during-altitude phases, together with the estimated analytical SD. RESULTS: During-altitude Hbmass was estimated to increase by â¼1.1%/100 h for LHTL and classic altitude. Postaltitude Hbmass was estimated to be 3.3% higher than prealtitude values for up to 20 days. The within-subject SD was constant at â¼2% for up to 7 days between observations, indicative of analytical error. A 95% prediction interval for the 'true' response of an athlete exposed to 300 h of altitude was estimated to be 1.1-6%. CONCLUSIONS: Camps as short as 2 weeks of classic and LHTL altitude will quite likely increase Hbmass and most athletes can expect benefit.
Asunto(s)
Altitud , Monóxido de Carbono/administración & dosificación , Hemoglobinas/metabolismo , Aclimatación/fisiología , Rendimiento Atlético/fisiología , Carboxihemoglobina/metabolismo , Humanos , Hipoxia/fisiopatología , RespiraciónRESUMEN
Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.
Asunto(s)
Aclimatación/fisiología , Altitud , Rendimiento Atlético/fisiología , Presión Atmosférica , Conducta Competitiva/fisiología , Ejercicio Físico/fisiología , Tolerancia al Ejercicio/fisiología , Predicción , Procesos de Grupo , Humanos , Hipoxia/fisiopatología , Práctica Profesional/tendencias , Sueño/fisiología , Medicina Deportiva/métodos , Medicina Deportiva/tendenciasRESUMEN
Live High:Train Low (LHTL) altitude training is a popular ergogenic aid amongst athletes. An alternative hypoxia protocol, acute (60-90 min daily) Intermittent Hypoxic Exposure (IHE), has shown potential for improving athletic performance. The aim of this study was to compare directly the effects of LHTL and IHE on the running and blood characteristics of elite triathletes. Changes in total haemoglobin mass (Hbmass), maximal oxygen consumption (VO2max), velocity at VO2max (vVO2max), time to exhaustion (TTE), running economy, maximal blood lactate concentration ([La]) and 3 mM [La] running speed were compared following 17 days of LHTL (240 h of hypoxia), IHE (10.2 h of hypoxia) or Placebo treatment in 24 Australian National Team triathletes (7 female, 17 male). There was a clear 3.2 ± 4.8% (mean ± 90% confidence limits) increase in Hbmass following LHTL compared with Placebo, whereas the corresponding change of -1.4 ± 4.5% in IHE was unclear. Following LHTL, running economy was 2.8 ± 4.4% improved compared to IHE and 3mM [La] running speed was 4.4 ± 4.5% improved compared to Placebo. After IHE, there were no beneficial changes in running economy or 3mM [La] running speed compared to Placebo. There were no clear changes in VO2max, vVO2max and TTE following either method of hypoxia. The clear difference in Hbmass response between LHTL and IHE indicated that the dose of hypoxia in IHE was insufficient to induce accelerated erythropoiesis. Improved running economy and 3mM [La] running speed following LHTL suggested that this method of hypoxic exposure may enhance performance at submaximal running speeds. Overall, there was no evidence to support the use of IHE in elite triathletes. Key PointsDespite a clear 3.2% increase in haemoglobin mass following 17 days of Live High: Train Low altitude training, no change in maximal aerobic capacity was observed.There were positive changes in running economy and the lactate-speed relationship at submaximal running speeds following Live High: Train Low altitude training.There was no evidence to support the use of daily 60-90 minute Intermittent Hypoxic Exposure in elite triathletes.
RESUMEN
We compared changes in performance and total haemoglobin mass (tHb) of elite swimmers in the weeks following either Classic or Live High:Train Low (LHTL) altitude training. Twenty-six elite swimmers (15 male, 11 female, 21.4 ± 2.7 years; mean ± SD) were divided into two groups for 3 weeks of either Classic or LHTL altitude training. Swimming performances over 100 or 200 m were assessed before altitude, then 1, 7, 14 and 28 days after returning to sea-level. Total haemoglobin mass was measured twice before altitude, then 1 and 14 days after return to sea-level. Changes in swimming performance in the first week after Classic and LHTL were compared against those of Race Control (n = 11), a group of elite swimmers who did not complete altitude training. In addition, a season-long comparison of swimming performance between altitude and non-altitude groups was undertaken to compare the progression of performances over the course of a competitive season. Regardless of altitude training modality, swimming performances were substantially slower 1 day (Classic 1.4 ± 1.3% and LHTL 1.6 ± 1.6%; mean ± 90% confidence limits) and 7 days (0.9 ± 1.0% and 1.9 ± 1.1%) after altitude compared to Race Control. In both groups, performances 14 and 28 days after altitude were not different from pre-altitude. The season-long comparison indicated that no clear advantage was obtained by swimmers who completed altitude training. Both Classic and LHTL elicited ~4% increases in tHb. Although altitude training induced erythropoeisis, this physiological adaptation did not transfer directly into improved competitive performance in elite swimmers.
Asunto(s)
Altitud , Rendimiento Atlético/fisiología , Hemoglobinas/análisis , Educación y Entrenamiento Físico/métodos , Natación/fisiología , Adaptación Fisiológica/fisiología , Adolescente , Adulto , Atletas , Recuento de Eritrocitos , Femenino , Humanos , Masculino , Adulto JovenRESUMEN
We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h−1 CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL−1) in I-FABP after exercise across all trials, with no significant differences in breath H2 across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15−63 s]; MAX = 36 s [13−59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes.
Asunto(s)
Carbohidratos de la Dieta , Resistencia Física , Atletas , Dieta , Femenino , Humanos , Masculino , Resistencia Física/fisiología , Caminata/fisiologíaRESUMEN
Running is the most important discipline for Olympic triathlon success. However, cycling impairs running muscle recruitment and performance in some highly trained triathletes; though it is not known if this occurs in elite international triathletes. The purpose of this study was to investigate the effect of cycling in two different protocols on running economy and neuromuscular control in elite international triathletes. Muscle recruitment and sagittal plane joint angles of the left lower extremity and running economy were compared between control (no preceding cycle) and transition (preceded by cycling) runs for two different cycle protocols (20-minute low-intensity and 50-minute high-intensity cycles) in seven elite international triathletes. Muscle recruitment and joint angles were not different between control and transition runs for either cycle protocols. Running economy was also not different between control and transition runs for the low-intensity (62.4 +/- 4.5 vs. 62.1 +/- 4.0 ml/min/kg, p > 0.05) and high-intensity (63.4 +/- 3.5 vs. 63.3 +/- 4.3 ml/min/kg, p > 0.05) cycle protocols. The results of this study demonstrate that both low- and high-intensity cycles do not adversely influence neuromuscular control and running economy in elite international triathletes.
Asunto(s)
Rendimiento Atlético/fisiología , Ciclismo/fisiología , Músculo Esquelético/fisiología , Carrera/fisiología , Adulto , Análisis de Varianza , Fenómenos Biomecánicos , Electromiografía , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Esfuerzo Físico/fisiología , Natación/fisiologíaRESUMEN
PURPOSE: The risk of exercise-induced endotoxemia is increased in the heat and is primarily attributable to changes in gut permeability resulting in the translocation of lipopolysaccharides (LPS) into the circulation. The purpose of this study was to quantify the acute changes in gut permeability and LPS translocation during submaximal continuous and high-intensity interval exercise under heat stress. METHODS: A total of 12 well-trained male runners (age 37 [7] y, maximal oxygen uptake [VO2max] 61.0 [6.8] mL·min-1·kg-1) undertook 2 treadmill runs of 2 × 15-minutes at 60% and 75% VO2max and up to 8 × 1-minutes at 95% VO2max in HOT (34°C, 68% relative humidity) and COOL (18°C, 57% relative humidity) conditions. Venous blood samples were collected at the baseline, following each running intensity, and 1 hour postexercise. Blood samples were analyzed for markers of intestinal permeability (LPS, LPS binding protein, and intestinal fatty acid-binding protein). RESULTS: The increase in LPS binding protein following each exercise intensity in the HOT condition was 4% (5.3 µg·mL-1, 2.4-8.4; mean, 95% confidence interval, P < .001), 32% (4.6 µg·mL-1, 1.8-7.4; P = .002), and 30% (3.0 µg·mL-1, 0.03-5.9; P = .047) greater than in the COOL condition. LPS was 69% higher than baseline following running at 75% VO2max in the HOT condition (0.2 endotoxin units·mL-1, 0.1-0.4; P = .011). Intestinal fatty acid-binding protein increased 43% (2.1 ng·mL-1, 0.1-4.2; P = .04) 1 hour postexercise in HOT compared with the COOL condition. CONCLUSIONS: Small increases in LPS concentration during exercise in the heat and subsequent increases in intestinal fatty acid-binding protein and LPS binding protein indicate a capacity to tolerate acute, transient intestinal disturbance in well-trained endurance runners.
Asunto(s)
Endotoxemia/sangre , Ejercicio Físico/fisiología , Trastornos de Estrés por Calor , Mucosa Intestinal/metabolismo , Consumo de Oxígeno , Carrera/fisiología , Adulto , Prueba de Esfuerzo , Calor , Humanos , Masculino , Esfuerzo FísicoRESUMEN
Elite athletes often undertake altitude training to improve sea-level athletic performance, yet the optimal methodology has not been established. A combined approach of live high/train low plus train high (LH/TL+TH) may provide an additional training stimulus to enhance performance gains. Seventeen male and female middle-distance runners with maximal aerobic power (VO2max) of 65.5 +/- 7.3 mL kg(-1) min(-1) (mean +/- SD) trained on a treadmill in normobaric hypoxia for 3 weeks (2,200 m, 4 week(-1)). During this period, the train high (TH) group (n = 9) resided near sea-level (approximately 600 m) while the LH/TL+TH group (n = 8) stayed in normobaric hypoxia (3,000 m) for 14 hours day(-1). Changes in 3-km time trial performance and physiological measures including VO2max, running economy and haemoglobin mass (Hb(mass)) were assessed. The LH/TL+TH group substantially improved VO2max (4.8%; +/-2.8%, mean; +/-90% CL), Hb(mass) (3.6%; +/-2.4%) and 3-km time trial performance (-1.1%; +/-1.0%) immediately post-altitude. There was no substantial improvement in time trial performance 2 weeks later. The TH group substantially improved VO2max (2.2%; +/-1.8%), but had only trivial changes in Hb(mass) and 3-km time-trial performance. Compared with TH, combined LH/TL+TH substantially improved VO2max (2.6%; +/-3.2%), Hb(mass) (4.3%; +/-3.2%), and time trial performance (-0.9%; +/-1.4%) immediately post-altitude. LH/TL+TH elicited greater enhancements in physiological capacities compared with TH, however, the transfer of benefits to time-trial performance was more variable.
Asunto(s)
Aclimatación , Altitud , Hipoxia/fisiopatología , Fuerza Muscular , Músculo Esquelético/fisiopatología , Resistencia Física , Femenino , Hemoglobinas/metabolismo , Humanos , Hipoxia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxígeno , Carrera , Análisis y Desempeño de Tareas , Factores de TiempoRESUMEN
The use of rolling averages to analyse training data has been debated recently. We evaluated two training load quantification methods (five-zone, seven-zone) fitted to performances over two race distances (50 and 100â m) using four separate longitudinal models (Banister, Busso. rolling averages and exponentially weighted rolling averages) for three swimmers ranked in the top 8 in the world. A total of 1610 daily load measures and 108 performances were collected. Banister (standard error of the estimate (SEE) 0.64 and 0.62â s; five-zone and seven-zone quantification methods), Busso (SEE 0.73 and 0.70â s) and exponentially weighted rolling averages (SEE 0.57 and 0.63â s) models fitted more accurately (p < 0.001) than the rolling averages approach (SEE 1.32 and 1.36â s). The seven-zone quantification method did not produce more accurate performance predictions than the five-zone method, despite being a more detailed form of training load quantification. Four neural network models were fitted and had a lower error (SEE 0.38, 0.41, 0.35 and 0.60â s) than all longitudinal models, but did not track as predictably over time. Exponentially weighted impulse-response models and exponentially weighted rolling averages appear more effective at predicting performance using training load data in elite swimmers than a rolling averages approach.
Asunto(s)
Rendimiento Atlético/fisiología , Modelos Teóricos , Redes Neurales de la Computación , Esfuerzo Físico/fisiología , Natación/fisiología , Femenino , Humanos , Masculino , Fuerza Muscular , Adulto JovenRESUMEN
PURPOSE: To quantify, for an elite-level racewalker, altitude training, heat acclimation and acclimatization, physiological data, and race performance from January 2007 to August 2008. METHODS: The participant performed 7 blocks of altitude training: 2 "live high:train high" blocks at 1380 m (total = 22 d) and 5 simulated "live high:train low" blocks at 3000 m/600 m (total = 98 d). Prior to the 2007 World Championships and the 2008 Olympic Games, 2 heat-acclimation blocks of ~6 weeks were performed (1 session/week), with â¼2 weeks of heat acclimatization completed immediately prior to each 20-km event. RESULTS: During the observation period, physiological testing included maximal oxygen uptake (VO2max, mL·kg-1·min-1), walking speed (km·h-1) at 4 mmol·L-1 blood lactate concentration [La-], body mass (kg), and hemoglobin mass (g), and 12 × 20-km races and 2 × 50-km races were performed. The highest VO2max was 67.0 mL·kg-1·min-1 (August 2007), which improved 3.1% from the first measurement (64.9 mL·kg-1·min-1, June 2007). The highest percentage change in any physiological variable was 7.1%, for 4 mmol·L-1 [La-] walking speed, improving from 14.1 (June 2007) to 15.1 km·h-1 (August 2007). Personal-best times for 20 km improved from (hh:mm:ss) 1:21:36 to 1:19:41 (2.4%) and from 3:55:08 to 3:39:27 (7.1%) in the 50-km event. The participant won Olympic bronze and silver medals in the 20- and 50-km, respectively. CONCLUSIONS: Elite racewalkers who regularly perform altitude training may benefit from periodized heat acclimation and acclimatization prior to major international competitions in the heat.
RESUMEN
This methods paper outlines the overall design of a community-based multidisciplinary longitudinal study with the intent to stimulate interest and communication from scientists and practitioners studying the role of physical activity in preventive medicine. In adults, lack of regular exercise is a major risk factor in the development of chronic degenerative diseases and is a major contributor to obesity, and now we have evidence that many of our children are not sufficiently active to prevent early symptoms of chronic disease. The lifestyle of our kids (LOOK) study investigates how early physical activity contributes to health and development, utilizing a longitudinal design and a cohort of eight hundred and thirty 7-8-year-old (grade 2) school children followed to age 11-12 years (grade 6), their average family income being very close to that of Australia. We will test two hypotheses, that (a) the quantity and quality of physical activity undertaken by primary school children will influence their psychological and physical health and development; (b) compared with existing practices in primary schools, a physical education program administered by visiting specialists will enhance health and development, and lead to a more positive perception of physical activity. To test the first hypothesis we will monitor all children longitudinally over the 4 years. To test the second we will involve an intervention group of 430 children who receive two 50min physical education classes every week from visiting specialists and a control group of 400 who continue with their usual primary school physical education with their class-room teachers. At the end of grades 2, 4, and 6 we will measure several areas of health and development including blood risk factors for chronic disease, cardiovascular structure and function, physical fitness, psychological characteristics and perceptions of physical activity, bone structure and strength, motor control, body composition, nutritional intake, influence of teachers and family, and academic performance.
Asunto(s)
Enfermedad Crónica/prevención & control , Recolección de Datos/métodos , Ejercicio Físico/fisiología , Promoción de la Salud/métodos , Actividad Motora/fisiología , Proyectos de Investigación , Adolescente , Australia , Niño , Servicios de Salud Comunitaria/métodos , Ecocardiografía , Humanos , Estilo de Vida , Estudios Longitudinales , Aptitud Física/fisiología , Aptitud Física/psicología , Medicina Preventiva/métodos , Autoevaluación (Psicología)RESUMEN
To validate VO2 and energy expenditure predictions by the Suunto heart rate (HR) system against a first principle gas analysis system, well-trained male (n = 10, age 29.8 +/- 4.3 years, VO2 65.9 +/- 9.7 ml x kg x min) and female (n = 7, 25.6 +/- 3.6 years, 57.0 +/- 4.2 ml x kg x min) runners completed a 2-stage incremental running test to establish submaximal and maximal oxygen uptake values. Metabolic cart values were used as the criterion measure of VO2 and energy expenditure (kJ) and compared with the predicted values from the Suunto software. The 3 levels of software analysis for the Suunto system were basic personal information (BI), BI + measured maximal HR (BIhr), and BIhr + measured VO2 (BIhr + v). Comparisons were analyzed using linear regression to determine the standard error of the estimate (SEE). Eight subjects repeated the trial within 7 days to determine reliability (typical error [TE]). The SEEs for oxygen consumption via BI, BIhr, and BIhr + v were 2.6, 2.8, and 2.6 ml.kg.min, respectively, with corresponding percent coefficient of variation (%CV) of 6.0, 6.5, and 6.0. The bias compared with the criterion VO2 decreased from -6.3 for BI, -2.5 for BIhr, to -0.9% for BIhr + v. The SEE of energy expenditure improved from BI (6.74 kJ) to BIhr (6.56) and BIhr + v (6.14) with corresponding %CV of 13.6, 12.2, and 12.7. The TE values for VO2 were approximately 0.60 ml x kg x min and approximately 2 kJ for energy expenditure. The %CV for VO2 and energy expenditure was approximately 1 to 4%. Although reliable, basic HR-based estimations of VO2 and energy expenditure from the Suunto system underestimated VO2 and energy expenditure by approximately 6 and 13%, respectively. However, estimation can be improved when maximal HR and VO2 values are added to the software analysis.