RESUMEN
OBJECTIVE: The use of measurement data in occupational exposure assessment allows more quantitative analyses of possible exposure-response relations. We describe a quantitative exposure assessment approach for five lung carcinogens (i.e. asbestos, chromium-VI, nickel, polycyclic aromatic hydrocarbons (by its proxy benzo(a)pyrene (BaP)) and respirable crystalline silica). A quantitative job-exposure matrix (JEM) was developed based on statistical modeling of large quantities of personal measurements. METHODS: Empirical linear models were developed using personal occupational exposure measurements (n = 102306) from Europe and Canada, as well as auxiliary information like job (industry), year of sampling, region, an a priori exposure rating of each job (none, low, and high exposed), sampling and analytical methods, and sampling duration. The model outcomes were used to create a JEM with a quantitative estimate of the level of exposure by job, year, and region. RESULTS: Decreasing time trends were observed for all agents between the 1970s and 2009, ranging from -1.2% per year for personal BaP and nickel exposures to -10.7% for asbestos (in the time period before an asbestos ban was implemented). Regional differences in exposure concentrations (adjusted for measured jobs, years of measurement, and sampling method and duration) varied by agent, ranging from a factor 3.3 for chromium-VI up to a factor 10.5 for asbestos. CONCLUSION: We estimated time-, job-, and region-specific exposure levels for four (asbestos, chromium-VI, nickel, and RCS) out of five considered lung carcinogens. Through statistical modeling of large amounts of personal occupational exposure measurement data we were able to derive a quantitative JEM to be used in community-based studies.
Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Carcinógenos/análisis , Neoplasias Pulmonares/etiología , Exposición Profesional/análisis , Amianto/análisis , Canadá , Cromo/análisis , Europa (Continente) , Humanos , Níquel/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Dióxido de Silicio/análisisRESUMEN
OBJECTIVES: The quantitative job-exposure matrix SYN-JEM consists of various dimensions: job-specific estimates, region-specific estimates, and prior expert ratings of jobs by the semi-quantitative DOM-JEM. We analyzed the effect of different JEM dimensions on the exposure-response relationships between occupational silica exposure and lung cancer risk to investigate how these variations influence estimates of exposure by a quantitative JEM and associated health endpoints. METHODS: Using SYN-JEM, and alternative SYN-JEM specifications with varying dimensions included, cumulative silica exposure estimates were assigned to 16 901 lung cancer cases and 20 965 controls pooled from 14 international community-based case-control studies. Exposure-response relationships based on SYN-JEM and alternative SYN-JEM specifications were analyzed using regression analyses (by quartiles and log-transformed continuous silica exposure) and generalized additive models (GAM), adjusted for age, sex, study, cigarette pack-years, time since quitting smoking, and ever employment in occupations with established lung cancer risk. RESULTS: SYN-JEM and alternative specifications generated overall elevated and similar lung cancer odds ratios ranging from 1.13 (1st quartile) to 1.50 (4th quartile). In the categorical and log-linear analyses SYN-JEM with all dimensions included yielded the best model fit, and exclusion of job-specific estimates from SYN-JEM yielded the poorest model fit. Additionally, GAM showed the poorest model fit when excluding job-specific estimates. CONCLUSION: The established exposure-response relationship between occupational silica exposure and lung cancer was marginally influenced by varying the dimensions of SYN-JEM. Optimized modelling of exposure-response relationships will be obtained when incorporating all relevant dimensions, namely prior rating, job, time, and region. Quantitative job-specific estimates appeared to be the most prominent dimension for this general population JEM.
Asunto(s)
Neoplasias Pulmonares , Exposición Profesional , Humanos , Exposición Profesional/análisis , Ocupaciones , Estudios de Casos y Controles , Dióxido de Silicio/análisisRESUMEN
OBJECTIVES: We describe the elaboration and sensitivity analyses of a quantitative job-exposure matrix (SYN-JEM) for respirable crystalline silica (RCS). The aim was to gain insight into the robustness of the SYN-JEM RCS estimates based on critical decisions taken in the elaboration process. METHODS: SYN-JEM for RCS exposure consists of three axes (job, region, and year) based on estimates derived from a previously developed statistical model. To elaborate SYN-JEM, several decisions were taken: i.e. the application of (i) a single time trend; (ii) region-specific adjustments in RCS exposure; and (iii) a prior job-specific exposure level (by the semi-quantitative DOM-JEM), with an override of 0 mg/m(3) for jobs a priori defined as non-exposed. Furthermore, we assumed that exposure levels reached a ceiling in 1960 and remained constant prior to this date. We applied SYN-JEM to the occupational histories of subjects from a large international pooled community-based case-control study. Cumulative exposure levels derived with SYN-JEM were compared with those from alternative models, described by Pearson correlation ((Rp)) and differences in unit of exposure (mg/m(3)-year). Alternative models concerned changes in application of job- and region-specific estimates and exposure ceiling, and omitting the a priori exposure ranking. RESULTS: Cumulative exposure levels for the study subjects ranged from 0.01 to 60 mg/m(3)-years, with a median of 1.76 mg/m(3)-years. Exposure levels derived from SYN-JEM and alternative models were overall highly correlated (R(p) > 0.90), although somewhat lower when omitting the region estimate ((Rp) = 0.80) or not taking into account the assigned semi-quantitative exposure level (R(p) = 0.65). Modification of the time trend (i.e. exposure ceiling at 1950 or 1970, or assuming a decline before 1960) caused the largest changes in absolute exposure levels (26-33% difference), but without changing the relative ranking ((Rp) = 0.99). CONCLUSIONS: Exposure estimates derived from SYN-JEM appeared to be plausible compared with (historical) levels described in the literature. Decisions taken in the development of SYN-JEM did not critically change the cumulative exposure levels. The influence of region-specific estimates needs to be explored in future risk analyses.
Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Ocupaciones/clasificación , Medición de Riesgo/métodos , Dióxido de Silicio/análisis , Canadá/epidemiología , Estudios de Casos y Controles , Europa (Continente)/epidemiología , Francia/epidemiología , Alemania/epidemiología , Humanos , Industrias , Exposición por Inhalación/análisis , Exposición Profesional/análisis , Estudios Retrospectivos , Estadísticas no Paramétricas , Reino Unido/epidemiologíaRESUMEN
Wood dust is an established carcinogen also linked to several non malignant respiratory disorders. A major limitation in research on wood dust and its health effects is the lack of (historical) quantitative estimates of occupational exposure for use in general population-based case-control or cohort studies. The present study aimed to develop a multinational quantitative Job Exposure Matrix (JEM) for wood dust exposure using exposure data from several Northern and Central European countries. For this, an occupational exposure database containing 12653 personal wood dust measurements collected between 1978 and 2007 in Denmark, Finland, France, The Netherlands, Norway, and the United Kingdom (UK) was established. Measurement data were adjusted for differences in inhalable dust sampling efficiency resulting from the use of different dust samplers and analysed using linear mixed effect regression with job codes (ISCO-88) and country treated as random effects. Fixed effects were the year of measurement, the expert assessment of exposure intensity (no, low, and high exposure) for every ISCO-88 job code from an existing wood dust JEM and sampling duration. The results of the models suggest that wood dust exposure has declined annually by approximately 8%. Substantial differences in exposure levels between countries were observed with the highest levels in the United Kingdom and the lowest in Denmark and Norway, albeit with similar job rankings across countries. The jobs with the highest predicted exposure are floor layers and tile setters, wood-products machine operators, and building construction labourers with geometric mean levels for the year 1997 between 1.7 and 1.9 mg/m3. The predicted exposure estimates by the model are compared with the results of wood dust measurement data reported in the literature. The model predicted estimates for full-shift exposures were used to develop a time-dependent quantitative JEM for exposure to wood dust that can be used to estimate exposure for participants of general population studies in Northern European countries on the health effects from occupational exposure to wood dust.
Asunto(s)
Exposición Profesional , Humanos , Exposición Profesional/análisis , Madera/química , Ocupaciones , Estudios de Cohortes , Polvo/análisisRESUMEN
BACKGROUND: SYNERGY is a large pooled analysis of case-control studies on the joint effects of occupational carcinogens and smoking in the development of lung cancer. A quantitative job-exposure matrix (JEM) will be developed to assign exposures to five major lung carcinogens [asbestos, chromium, nickel, polycyclic aromatic hydrocarbons (PAH), and respirable crystalline silica (RCS)]. We assembled an exposure database, called ExpoSYN, to enable such a quantitative exposure assessment. METHODS: Existing exposure databases were identified and European and Canadian research institutes were approached to identify pertinent exposure measurement data. Results of individual air measurements were entered anonymized according to a standardized protocol. RESULTS: The ExpoSYN database currently includes 356 551 measurements from 19 countries. In total, 140 666 personal and 215 885 stationary data points were available. Measurements were distributed over the five agents as follows: RCS (42%), asbestos (20%), chromium (16%), nickel (15%), and PAH (7%). The measurement data cover the time period from 1951 to present. However, only a small portion of measurements (1.4%) were performed prior to 1975. The major contributing countries for personal measurements were Germany (32%), UK (22%), France (14%), and Norway and Canada (both 11%). CONCLUSIONS: ExpoSYN is a unique occupational exposure database with measurements from 18 European countries and Canada covering a time period of >50 years. This database will be used to develop a country-, job-, and time period-specific quantitative JEM. This JEM will enable data-driven quantitative exposure assessment in a multinational pooled analysis of community-based lung cancer case-control studies.
Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Carcinógenos/análisis , Bases de Datos Factuales , Neoplasias Pulmonares/etiología , Exposición Profesional/análisis , Amianto/análisis , Canadá , Cromo/análisis , Monitoreo del Ambiente/métodos , Europa (Continente) , Estudios de Factibilidad , Humanos , Níquel/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Cuarzo/análisis , Estudios RetrospectivosRESUMEN
Exposure was assessed in four facilities where used tires are turned into rubber granulates. Particulate exposure levels were measured using filter samples and gravimetric analysis. In parallel, volatile organic compounds (VOCs) screening was carried out using samples taken on activated carbon supports, followed by an analysis using a gas chromatograph coupled to a spectrometric detector. The exposure level medians are between 0.58 and 3.95 mg m(-3). Clogging of the textile fiber separation systems can lead to worker exposure; in this case, the measured concentrations can reach 41 mg m(-3). However, in contrast to the data in the literature, VOC levels >1 p.p.m. were not detected. The particulate mixtures deposited on the installation surfaces are complex; some of the chemical agents are toxic to humans. The results of this study indicate significant exposure to complex mixtures of rubber dust. Optimizing exhaust ventilation systems inside the shredders, with a cyclone for example, is essential for reducing the exposure of workers in this rapidly developing sector.
Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Exposición Profesional/análisis , Material Particulado/análisis , Reciclaje , Goma , Compuestos Orgánicos Volátiles/análisis , Polvo/análisis , Francia , HumanosRESUMEN
We describe an empirical model for exposure to respirable crystalline silica (RCS) to create a quantitative job-exposure matrix (JEM) for community-based studies. Personal measurements of exposure to RCS from Europe and Canada were obtained for exposure modelling. A mixed-effects model was elaborated, with region/country and job titles as random effect terms. The fixed effect terms included year of measurement, measurement strategy (representative or worst-case), sampling duration (minutes) and a priori exposure intensity rating for each job from an independently developed JEM (none, low, high). 23,640 personal RCS exposure measurements, covering a time period from 1976 to 2009, were available for modelling. The model indicated an overall downward time trend in RCS exposure levels of -6% per year. Exposure levels were higher in the UK and Canada, and lower in Northern Europe and Germany. Worst-case sampling was associated with higher reported exposure levels and an increase in sampling duration was associated with lower reported exposure levels. Highest predicted RCS exposure levels in the reference year (1998) were for chimney bricklayers (geometric mean 0.11 mg m(-3)), monument carvers and other stone cutters and carvers (0.10 mg m(-3)). The resulting model enables us to predict time-, job-, and region/country-specific exposure levels of RCS. These predictions will be used in the SYNERGY study, an ongoing pooled multinational community-based case-control study on lung cancer.