Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Bioessays ; 44(5): e2100296, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35266563

RESUMEN

Degradation of eukaryotic RNAs that contain premature termination codons (PTC) during nonsense-mediated mRNA decay (NMD) is initiated by RNA decapping or endonucleolytic cleavage driven by conserved factors. Models for NMD mechanisms, including recognition of PTCs or the timing and role of protein phosphorylation for RNA degradation are challenged by new results. For example, the depletion of the SMG5/7 heterodimer, thought to activate RNA degradation by decapping, leads to a phenotype showing a defect of endonucleolytic activity of NMD complexes. This phenotype is not correlated to a decreased binding of the endonuclease SMG6 with the core NMD factor UPF1, suggesting that it is the result of an imbalance between active (e.g., in polysomes) and inactive (e.g., in RNA-protein condensates) states of NMD complexes. Such imbalance between multiple complexes is not restricted to NMD and should be taken into account when establishing causal links between gene function perturbation and observed phenotypes.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , Estabilidad del ARN , Codón sin Sentido/genética , Fosforilación , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Nucleic Acids Res ; 49(15): 8535-8555, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34358317

RESUMEN

Gene deletion and gene expression alteration can lead to growth defects that are amplified or reduced when a second mutation is present in the same cells. We performed 154 genetic interaction mapping (GIM) screens with query mutants related with RNA metabolism and estimated the growth rates of about 700 000 double mutant Saccharomyces cerevisiae strains. The tested targets included the gene deletion collection and 900 strains in which essential genes were affected by mRNA destabilization (DAmP). To analyze the results, we developed RECAP, a strategy that validates genetic interaction profiles by comparison with gene co-citation frequency, and identified links between 1471 genes and 117 biological processes. In addition to these large-scale results, we validated both enhancement and suppression of slow growth measured for specific RNA-related pathways. Thus, negative genetic interactions identified a role for the OCA inositol polyphosphate hydrolase complex in mRNA translation initiation. By analysis of suppressors, we found that Puf4, a Pumilio family RNA binding protein, inhibits ribosomal protein Rpl9 function, by acting on a conserved UGUAcauUA motif located downstream the stop codon of the RPL9B mRNA. Altogether, the results and their analysis should represent a useful resource for discovery of gene function in yeast.


Asunto(s)
Genes Fúngicos , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Eliminación de Gen , Pleiotropía Genética , Fosfatos de Inositol/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/fisiología , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
3.
EMBO J ; 37(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30275269

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA degradation pathway involved in many cellular pathways and crucial for telomere maintenance and embryo development. Core NMD factors Upf1, Upf2 and Upf3 are conserved from yeast to mammals, but a universal NMD model is lacking. We used affinity purification coupled with mass spectrometry and an improved data analysis protocol to characterize the composition and dynamics of yeast NMD complexes in yeast (112 experiments). Unexpectedly, we identified two distinct complexes associated with Upf1: Upf1-23 (Upf1, Upf2, Upf3) and Upf1-decappingUpf1-decapping contained the mRNA decapping enzyme, together with Nmd4 and Ebs1, two proteins that globally affected NMD and were critical for RNA degradation mediated by the Upf1 C-terminal helicase region. The fact that Nmd4 association with RNA was partially dependent on Upf1-23 components and the similarity between Nmd4/Ebs1 and mammalian Smg5-7 proteins suggest that NMD operates through conserved, successive Upf1-23 and Upf1-decapping complexes. This model can be extended to accommodate steps that are missing in yeast, to serve for further mechanistic studies of NMD in eukaryotes.


Asunto(s)
Modelos Biológicos , Complejos Multiproteicos/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , ARN Helicasas/metabolismo , ARN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos Multiproteicos/genética , ARN Helicasas/genética , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-33468481

RESUMEN

Preservatives increase the shelf life of cosmetic products by preventing growth of contaminating microbes, including bacteria and fungi. In recent years, the Scientific Committee on Consumer Safety (SCCS) has recommended the ban or restricted use of a number of preservatives due to safety concerns. Here, we characterize the antifungal activity of ethylzingerone (hydroxyethoxyphenyl butanone [HEPB]), an SCCS-approved new preservative for use in rinse-off, oral care, and leave-on cosmetic products. We show that HEPB significantly inhibits growth of Candida albicans, Candida glabrata, and Saccharomyces cerevisiae, acting fungicidally against C. albicans Using transcript profiling experiments, we found that the C. albicans transcriptome responded to HEPB exposure by increasing the expression of genes involved in amino acid biosynthesis while activating pathways involved in chemical detoxification/oxidative stress response. Comparative analyses revealed that C. albicans phenotypic and transcriptomic responses to HEPB treatment were distinguishable from those of two widely used preservatives, triclosan and methylparaben. Chemogenomic analyses, using a barcoded S. cerevisiae nonessential mutant library, revealed that HEPB antifungal activity strongly interfered with the biosynthesis of aromatic amino acids. The trp1Δ mutants in S. cerevisiae and C. albicans were particularly sensitive to HEPB treatment, a phenotype rescued by exogenous addition of tryptophan to the growth medium, providing a direct link between HEPB mode of action and tryptophan availability. Collectively, our study sheds light on the antifungal activity of HEPB, a new molecule with safe properties for use as a preservative in the cosmetic industry, and exemplifies the powerful use of functional genomics to illuminate the mode of action of antimicrobial agents.


Asunto(s)
Antifúngicos , Cosméticos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida albicans , Saccharomyces cerevisiae/genética
5.
Cell Microbiol ; 21(5): e12994, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30552790

RESUMEN

If the mycelium of Aspergillus fumigatus is very short-lived in the laboratory, conidia can survive for years. This survival capacity and extreme resistance to environmental insults is a major biological characteristic of this fungal species. Moreover, conidia, which easily reach the host alveola, are the infective propagules. Earlier studies have shown the role of some molecules of the outer conidial layer in protecting the fungus against the host defense. The outer layer of the conidial cell wall, directly in contact with the host cells, consists of α-(1,3)-glucan, melanin, and proteinaceous rodlets. This study is focused on the global importance of this outer layer. Single and multiple mutants without one to three major components of the outer layer were constructed and studied. The results showed that the absence of the target molecules resulting from multiple gene deletions led to unexpected phenotypes without any logical additivity. Unexpected compensatory cell wall surface modifications were indeed observed, such as the synthesis of the mycelial virulence factor galactosaminogalactan, the increase in chitin and glycoprotein concentration or particular changes in permeability. However, sensitivity of the multiple mutants to killing by phagocytic host cells confirmed the major importance of melanin in protecting conidia.


Asunto(s)
Aspergillus fumigatus/metabolismo , Pared Celular/metabolismo , Melaninas/metabolismo , Esporas Fúngicas/metabolismo , Aspergilosis/inmunología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidad , Azoles/farmacología , Bencenosulfonatos/farmacología , Caspofungina/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/genética , Quitina/metabolismo , Rojo Congo/farmacología , Proteínas Fúngicas/metabolismo , Glucanos/genética , Glucanos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Melaninas/genética , Melaninas/fisiología , Monocitos/inmunología , Micelio/metabolismo , Fagocitos/metabolismo , Polisacáridos/metabolismo , Piocianina/farmacología , Esporas Fúngicas/citología , Esporas Fúngicas/genética , Factores de Virulencia/metabolismo
6.
Mol Microbiol ; 105(6): 880-900, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28677124

RESUMEN

Aspergillus fumigatus, a ubiquitous human fungal pathogen, produces asexual spores (conidia), which are the main mode of propagation, survival and infection of this human pathogen. In this study, we present the molecular characterization of a novel regulator of conidiogenesis and conidial survival called MybA because the predicted protein contains a Myb DNA binding motif. Cellular localization of the MybA::Gfp fusion and immunoprecipitation of the MybA::Gfp or MybA::3xHa protein showed that MybA is localized to the nucleus. RNA sequencing data and a uidA reporter assay indicated that the MybA protein functions upstream of wetA, vosA and velB, the key regulators involved in conidial maturation. The deletion of mybA resulted in a very significant reduction in the number and viability of conidia. As a consequence, the ΔmybA strain has a reduced virulence in an experimental murine model of aspergillosis. RNA-sequencing and biochemical studies of the ΔmybA strain suggested that MybA protein controls the expression of enzymes involved in trehalose biosynthesis as well as other cell wall and membrane-associated proteins and ROS scavenging enzymes. In summary, MybA protein is a new key regulator of conidiogenesis and conidial maturation and survival, and plays a crucial role in propagation and virulence of A. fumigatus.


Asunto(s)
Aspergillus fumigatus/genética , Esporas Fúngicas/genética , Aspergilosis/microbiología , Aspergillus fumigatus/metabolismo , Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/metabolismo , Eliminación de Secuencia , Factores de Transcripción/metabolismo , Virulencia/genética
7.
Proc Natl Acad Sci U S A ; 111(10): 3829-34, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567401

RESUMEN

Viruses have developed a wide range of strategies to escape from the host cells in which they replicate. For egress some archaeal viruses use a pyramidal structure with sevenfold rotational symmetry. Virus-associated pyramids (VAPs) assemble in the host cell membrane from the virus-encoded protein PVAP and open at the end of the infection cycle. We characterize this unusual supramolecular assembly using a combination of genetic, biochemical, and electron microscopic techniques. By whole-cell electron cryotomography, we monitored morphological changes in virus-infected host cells. Subtomogram averaging reveals the VAP structure. By heterologous expression of PVAP in cells from all three domains of life, we demonstrate that the protein integrates indiscriminately into virtually any biological membrane, where it forms sevenfold pyramids. We identify the protein domains essential for VAP formation in PVAP truncation mutants by their ability to remodel the cell membrane. Self-assembly of PVAP into pyramids requires at least two different, in-plane and out-of-plane, protein interactions. Our findings allow us to propose a model describing how PVAP arranges to form sevenfold pyramids and suggest how this small, robust protein may be used as a general membrane-remodeling system.


Asunto(s)
Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Rudiviridae/metabolismo , Sulfolobus/virología , Proteínas Virales/metabolismo , Liberación del Virus/fisiología , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Escherichia coli , Complejos Multiproteicos/química , Plásmidos/genética , Saccharomyces cerevisiae , Proteínas Virales/química
8.
Nucleic Acids Res ; 42(22): 13897-910, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25428373

RESUMEN

RNA helicases are essential for virtually all cellular processes, however, their regulation is poorly understood. The activities of eight RNA helicases are required for pre-mRNA splicing. Amongst these, Brr2p is unusual in having two helicase modules, of which only the amino-terminal helicase domain appears to be catalytically active. Using genetic and biochemical approaches, we investigated interaction of the carboxy-terminal helicase module, in particular the carboxy-terminal Sec63-2 domain, with the splicing RNA helicase Prp16p. Combining mutations in BRR2 and PRP16 suppresses or enhances physical interaction and growth defects in an allele-specific manner, signifying functional interactions. Notably, we show that Brr2p Sec63-2 domain can modulate the ATPase activity of Prp16p in vitro by interfering with its ability to bind RNA. We therefore propose that the carboxy-terminal helicase module of Brr2p acquired a regulatory function that allows Brr2p to modulate the ATPase activity of Prp16p in the spliceosome by controlling access to its RNA substrate/cofactor.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ARN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Alelos , ARN Helicasas DEAD-box/metabolismo , Calor , Intrones , Mutación , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/genética , Empalme del ARN , Factores de Empalme de ARN , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 110(13): 5046-51, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479637

RESUMEN

Ribosome stalling on eukaryotic mRNAs triggers cotranslational RNA and protein degradation through conserved mechanisms. For example, mRNAs lacking a stop codon are degraded by the exosome in association with its cofactor, the SKI complex, whereas the corresponding aberrant nascent polypeptides are ubiquitinated by the E3 ligases Ltn1 and Not4 and become proteasome substrates. How translation arrest is linked with polypeptide degradation is still unclear. Genetic screens with SKI and LTN1 mutants allowed us to identify translation-associated element 2 (Tae2) and ribosome quality control 1 (Rqc1), two factors that we found associated, together with Ltn1 and the AAA-ATPase Cdc48, to 60S ribosomal subunits. Translation-associated element 2 (Tae2), Rqc1, and Cdc48 were all required for degradation of polypeptides synthesized from Non-Stop mRNAs (Non-Stop protein decay; NSPD). Both Ltn1 and Rqc1 were essential for the recruitment of Cdc48 to 60S particles. Polysome gradient analyses of mutant strains revealed unique intermediates of this pathway, showing that the polyubiquitination of Non-Stop peptides is a progressive process. We propose that ubiquitination of the nascent peptide starts on the 80S and continues on the 60S, on which Cdc48 is recruited to escort the substrate for proteasomal degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Biosíntesis de Proteínas/fisiología , Proteolisis , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinación/fisiología , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN , Proteínas Represoras , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteína que Contiene Valosina
10.
Antimicrob Agents Chemother ; 60(3): 1438-49, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26666917

RESUMEN

In a search for new antifungal compounds, we screened a library of 4,454 chemicals for toxicity against the human fungal pathogen Aspergillus fumigatus. We identified sr7575, a molecule that inhibits growth of the evolutionary distant fungi A. fumigatus, Cryptococcus neoformans, Candida albicans, and Saccharomyces cerevisiae but lacks acute toxicity for mammalian cells. To gain insight into the mode of inhibition, sr7575 was screened against 4,885 S. cerevisiae mutants from the systematic collection of haploid deletion strains and 977 barcoded haploid DAmP (decreased abundance by mRNA perturbation) strains in which the function of essential genes was perturbed by the introduction of a drug resistance cassette downstream of the coding sequence region. Comparisons with previously published chemogenomic screens revealed that the set of mutants conferring sensitivity to sr7575 was strikingly narrow, affecting components of the endoplasmic reticulum-associated protein degradation (ERAD) stress response and the ER membrane protein complex (EMC). ERAD-deficient mutants were hypersensitive to sr7575 in both S. cerevisiae and A. fumigatus, indicating a conserved mechanism of growth inhibition between yeast and filamentous fungi. Although the unfolded protein response (UPR) is linked to ERAD regulation, sr7575 did not trigger the UPR in A. fumigatus and UPR mutants showed no enhanced sensitivity to the compound. The data from this chemogenomic analysis demonstrate that sr7575 exerts its antifungal activity by disrupting ER protein quality control in a manner that requires ERAD intervention but bypasses the need for the canonical UPR. ER protein quality control is thus a specific vulnerability of fungal organisms that might be exploited for antifungal drug development.


Asunto(s)
Antifúngicos/farmacología , Antifúngicos/toxicidad , Aspergillus fumigatus/efectos de los fármacos , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Animales , Aspergillus fumigatus/genética , Candida albicans/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Células HeLa/efectos de los fármacos , Humanos , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
11.
Nucleic Acids Res ; 41(20): 9461-70, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23945946

RESUMEN

Ribosome biogenesis requires >300 assembly factors in Saccharomyces cerevisiae. Ribosome assembly factors Imp3, Mrt4, Rlp7 and Rlp24 have sequence similarity to ribosomal proteins S9, P0, L7 and L24, suggesting that these pre-ribosomal factors could be placeholders that prevent premature assembly of the corresponding ribosomal proteins to nascent ribosomes. However, we found L7 to be a highly specific component of Rlp7-associated complexes, revealing that the two proteins can bind simultaneously to pre-ribosomal particles. Cross-linking and cDNA analysis experiments showed that Rlp7 binds to the ITS2 region of 27S pre-rRNAs, at two sites, in helix III and in a region adjacent to the pre-rRNA processing sites C1 and E. However, L7 binds to mature 25S and 5S rRNAs and cross-linked predominantly to helix ES7(L)b within 25S rRNA. Thus, despite their predicted structural similarity, our data show that Rlp7 and L7 clearly bind at different positions on the same pre-60S particles. Our results also suggest that Rlp7 facilitates the formation of the hairpin structure of ITS2 during 60S ribosomal subunit maturation.


Asunto(s)
ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Sitios de Unión , Datos de Secuencia Molecular , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Ribosómico/química , ARN Ribosómico 5S/química , ARN Ribosómico 5S/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química
12.
J Antimicrob Chemother ; 68(6): 1285-96, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23378416

RESUMEN

OBJECTIVES: Candida albicans is the most prevalent fungal pathogen of humans, causing a wide range of infections from harmless superficial to severe systemic infections. Improvement of the antifungal arsenal is needed since existing antifungals can be associated with limited efficacy, toxicity and antifungal resistance. Here we aimed to identify compounds that act synergistically with echinocandin antifungals and that could contribute to a faster reduction of the fungal burden. METHODS: A total of 38 758 compounds were tested for their ability to act synergistically with aminocandin, a ß-1,3-glucan synthase inhibitor of the echinocandin family of antifungals. The synergy between echinocandins and an identified hit was studied with chemogenomic screens and testing of individual Saccharomyces cerevisiae and C. albicans mutant strains. RESULTS: We found that colistin, an antibiotic that targets membranes in Gram-negative bacteria, is synergistic with drugs of the echinocandin family against all Candida species tested. The combination of colistin and aminocandin led to faster and increased permeabilization of C. albicans cells than either colistin or aminocandin alone. Echinocandin susceptibility was a prerequisite to be able to observe the synergy. A large-scale screen for genes involved in natural resistance of yeast cells to low doses of the drugs, alone or in combination, identified efficient sphingolipid and chitin biosynthesis as necessary to protect S. cerevisiae and C. albicans cells against the antifungal combination. CONCLUSIONS: These results suggest that echinocandin-mediated weakening of the cell wall facilitates colistin targeting of fungal membranes, which in turn reinforces the antifungal activity of echinocandins.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Colistina/farmacología , Equinocandinas/farmacología , Animales , Antifúngicos/uso terapéutico , Candida/genética , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Quitina/biosíntesis , Colistina/uso terapéutico , Colorantes , Sinergismo Farmacológico , Equinocandinas/uso terapéutico , Biblioteca de Genes , Aptitud Genética , Genotipo , Técnicas de Dilución del Indicador , Lipopéptidos/farmacología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mutación/genética , Propidio , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Esfingolípidos/biosíntesis
13.
Nucleic Acids Res ; 39(14): 6148-60, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21459853

RESUMEN

The EKC/KEOPS complex is universally conserved in Archaea and Eukarya and has been implicated in several cellular processes, including transcription, telomere homeostasis and genomic instability. However, the molecular function of the complex has remained elusive so far. We analyzed the transcriptome of EKC/KEOPS mutants and observed a specific profile that is highly enriched in targets of the Gcn4p transcriptional activator. GCN4 expression was found to be activated at the translational level in mutants via the defective recognition of the inhibitory upstream ORFs (uORFs) present in its leader. We show that EKC/KEOPS mutants are defective for the N6-threonylcarbamoyl adenosine modification at position 37 (t(6)A(37)) of tRNAs decoding ANN codons, which affects initiation at the inhibitory uORFs and provokes Gcn4 de-repression. Structural modeling reveals similarities between Kae1 and bacterial enzymes involved in carbamoylation reactions analogous to t(6)A(37) formation, supporting a direct role for the EKC in tRNA modification. These findings are further supported by strong genetic interactions of EKC mutants with a translation initiation factor and with threonine biosynthesis genes. Overall, our data provide a novel twist to understanding the primary function of the EKC/KEOPS and its impact on several essential cellular functions like transcription and telomere homeostasis.


Asunto(s)
Adenosina/análogos & derivados , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Adenosina/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/biosíntesis , Codón Iniciador , Factor 5 Eucariótico de Iniciación/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Mutación , Filogenia , Biosíntesis de Proteínas , ARN de Transferencia/química , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/genética
14.
RNA ; 16(5): 1007-17, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20348449

RESUMEN

In eukaryotes, ribosome biogenesis is a highly conserved process that starts in the nucleus and ends in the cytoplasm. In actively growing yeast cells, it is estimated that each nuclear pore complex (NPC) contributes to the export of about 25 pre-ribosomal particles per minute. Such an extremely active process requires several redundant export receptors for the pre-60S particles. Here, we report the identification of a novel pre-60S factor, Ecm1, which partially acts like Arx1 and becomes essential when the NPC function is affected. Ecm1 depletion, combined with the deletion of NPC components led to pre-60S retention in the nucleus. Functional links that we identified between Ecm1, 60S biogenesis, pre-60S export, and the NPC were correlated with physical interactions of Ecm1 with pre-60S particles and nucleoporins. These results support that Ecm1 is an additional factor involved in pre-60S export. While Ecm1 and Arx1 have redundant functions, overproduction of either one could not complement the absence of the other, whereas overproduction of Mex67 was able to partially restore the growth defect resulting from the absence of Ecm1 or Arx1. These data highlight the involvement of many factors acting together to export pre-60S particles.


Asunto(s)
Precursores del ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Genes Fúngicos , Poro Nuclear/metabolismo , Precursores del ARN/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos , beta Carioferinas/genética , beta Carioferinas/metabolismo
15.
Methods Mol Biol ; 2477: 225-236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35524120

RESUMEN

Multiple protein complexes are fundamental parts of living systems. Identification of the components of these complexes and characterization of the molecular mechanisms that allow their formation, function, and regulation can be done by affinity purification of proteins and associated factors followed by mass spectrometry of peptides. Speed and specificity for the isolation of complexes from whole cell extracts improved over time, together with the reliable identification and quantification of proteins by mass spectrometry. Relative quantification of proteins in such samples can now be done to characterize even relatively nonabundant complexes. We describe here our experience with proteins fused with the Z domain, derived from staphylococcal protein A, and IgG affinity purification for the analysis of protein complexes involved in RNA metabolism in the budding yeast Saccharomyces cerevisiae. We illustrate the use of enrichment calculations for proteins in purified samples as a way to robust identification of protein partners. While the protocols presented here are specific for yeast, their principles can be applied to the study of protein complexes in any other organism.


Asunto(s)
Proteínas , Saccharomyces cerevisiae , Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Péptidos/química , Proteínas/metabolismo , Saccharomyces cerevisiae/genética
16.
J Cell Biol ; 173(3): 349-60, 2006 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-16651379

RESUMEN

Eukaryotic pre-ribosomes go through cytoplasmic maturation steps before entering translation. The nucleocytoplasmic proteins participating in these late stages of maturation are reimported to the nucleus. In this study, we describe a functional network focused on Rei1/Ybr267w, a strictly cytoplasmic pre-60S factor indirectly involved in nuclear 27S pre-ribosomal RNA processing. In the absence of Rei1, the nuclear import of at least three other pre-60S factors is impaired. The accumulation in the cytoplasm of a small complex formed by the association of Arx1 with a novel factor, Alb1/Yjl122w, inhibits the release of the putative antiassociation factor Tif6 from the premature large ribosomal subunits and its recycling to the nucleus. We propose a model in which Rei1 is a key factor for the coordinated dissociation and recycling of the last pre-60S factors before newly synthesized large ribosomal subunits enter translation.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Polirribosomas/química , Polirribosomas/metabolismo , Unión Proteica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
Proc Natl Acad Sci U S A ; 105(15): 5821-6, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18408161

RESUMEN

Describing at a genomic scale how mutations in different genes influence one another is essential to the understanding of how genotype correlates with phenotype and remains a major challenge in biology. Previous studies pointed out the need for accurate measurements of not only synthetic but also buffering interactions in the characterization of genetic networks and functional modules. We developed a sensitive and efficient method that allows such measurements at a genomic scale in yeast. In a pilot experiment (41 genome-wide screens), we quantified the fitness of 140,000 double deletion strains relative to the corresponding single mutants and identified many genetic interactions. In addition to synthetic growth defects (validated experimentally with factors newly identified as genetically interfering with mRNA degradation), most of the identified genetic interactions measured weak epistatic effects. These weak effects, rarely meaningful when considered individually, were crucial to defining specific signatures for many gene deletions and had a major contribution in defining clusters of functionally related genes.


Asunto(s)
Redes Reguladoras de Genes , Genes Fúngicos , Mutación , Biblioteca de Genes , Genoma Fúngico , Saccharomyces cerevisiae/genética , Levaduras
18.
Nat Commun ; 12(1): 1859, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767140

RESUMEN

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoproteins initiates co-transcriptionally and requires the action of the assembly machinery including the Hsp90/R2TP complex, the Rsa1p:Hit1p heterodimer and the Bcd1 protein. We present genetic interactions between the Rsa1p-encoding gene and genes involved in chromatin organization including RTT106 that codes for the H3-H4 histone chaperone Rtt106p controlling H3K56ac deposition. We show that Bcd1p binds Rtt106p and controls its transcription-dependent recruitment by reducing its association with RNA polymerase II, modulating H3K56ac levels at gene body. We reveal the 3D structures of the free and Rtt106p-bound forms of Bcd1p using nuclear magnetic resonance and X-ray crystallography. The interaction is also studied by a combination of biophysical and proteomic techniques. Bcd1p interacts with a region that is distinct from the interaction interface between the histone chaperone and histone H3. Our results are evidence for a protein interaction interface for Rtt106p that controls its transcription-associated activity.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Chaperonas Moleculares/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional/fisiología , Proliferación Celular/fisiología , Cromatina/genética , Cristalografía por Rayos X , Histonas/metabolismo , Resonancia Magnética Nuclear Biomolecular , ARN Polimerasa II/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética/genética
19.
Mol Cell Biol ; 27(8): 2897-909, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17308036

RESUMEN

Ribosome biogenesis is driven by a large number of preribosomal factors that associate with and dissociate from the preribosomal particles along the maturation pathway. We have previously shown that budding yeast Mak11, whose homologues in other eukaryotes were described as modulating a p21-activated protein kinase function, accumulates in Rlp24-associated pre-60S complexes when their maturation is impeded in Saccharomyces cerevisiae. The functional inactivation of WD40 repeat protein Mak11 interfered with the 60S rRNA maturation, led to a cell cycle delay in G(1), and blocked green fluorescent protein-tagged Rpl25 in the nucleoli of yeast cells, indicating an early role of Mak11 in ribosome assembly. Surprisingly, Mak11 inactivation also led to a dramatic destabilization of Rlp24. The suppression of the thermosensitive phenotype of a mak11 mutant by RLP24 overexpression and a direct in vitro interaction between Rlp24 and Mak11 suggest that Mak11 acts as an Rlp24 cofactor during early steps of 60S ribosomal subunit assembly. Moreover, we found that Skb15, the Mak11 homologue in Schizosaccharomyces pombe, also associated with preribosomes and affected 60S biogenesis in fission yeast. It is thus likely that the previously observed phenotypes for MAK11 homologues in other eukaryotes are secondary to the main function of these proteins in ribosome formation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Homología de Secuencia , Secuencia de Aminoácidos , Nucléolo Celular/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Precursores del ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Quinasas p21 Activadas
20.
Mol Cell Biol ; 27(19): 6581-92, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17646390

RESUMEN

Allelic forms of DRG1/AFG2 confer resistance to the drug diazaborine, an inhibitor of ribosome biogenesis in Saccharomyces cerevisiae. Our results show that the AAA-ATPase Drg1 is essential for 60S maturation and associates with 60S precursor particles in the cytoplasm. Functional inactivation of Drg1 leads to an increased cytoplasmic localization of shuttling pre-60S maturation factors like Rlp24, Arx1, and Tif6. Surprisingly, Nog1, a nuclear pre-60S factor, was also relocalized to the cytoplasm under these conditions, suggesting that it is a previously unsuspected shuttling preribosomal factor that is exported with the precursor particles and very rapidly reimported. Proteins that became cytoplasmic under drg1 mutant conditions were blocked on pre-60S particles at a step that precedes the association of Rei1, a later-acting preribosomal factor. A similar cytoplasmic accumulation of Nog1 and Rlp24 in pre-60S-bound form could be seen after overexpression of a dominant-negative Drg1 variant mutated in the D2 ATPase domain. We conclude that the ATPase activity of Drg1 is required for the release of shuttling proteins from the pre-60S particles shortly after their nuclear export. This early cytoplasmic release reaction defines a novel step in eukaryotic ribosome maturation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citoplasma/metabolismo , Precursores de Proteínas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas , Subunidades Ribosómicas Grandes de Eucariotas/genética , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA