Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Annu Rev Neurosci ; 44: 517-546, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-33914591

RESUMEN

The mouse, as a model organism to study the brain, gives us unprecedented experimental access to the mammalian cerebral cortex. By determining the cortex's cellular composition, revealing the interaction between its different components, and systematically perturbing these components, we are obtaining mechanistic insight into some of the most basic properties of cortical function. In this review, we describe recent advances in our understanding of how circuits of cortical neurons implement computations, as revealed by the study of mouse primary visual cortex. Further, we discuss how studying the mouse has broadened our understanding of the range of computations performed by visual cortex. Finally, we address how future approaches will fulfill the promise of the mouse in elucidating fundamental operations of cortex.


Asunto(s)
Corteza Visual , Animales , Ratones , Neuronas , Estimulación Luminosa
2.
Nature ; 610(7930): 135-142, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36104560

RESUMEN

Distinguishing sensory stimuli caused by changes in the environment from those caused by an animal's own actions is a hallmark of sensory processing1. Saccades are rapid eye movements that shift the image on the retina. How visual systems differentiate motion of the image induced by saccades from actual motion in the environment is not fully understood2. Here we discovered that in mouse primary visual cortex (V1) the two types of motion evoke distinct activity patterns. This is because, during saccades, V1 combines the visual input with a strong non-visual input arriving from the thalamic pulvinar nucleus. The non-visual input triggers responses that are specific to the direction of the saccade and the visual input triggers responses that are specific to the direction of the shift of the stimulus on the retina, yet the preferred directions of these two responses are uncorrelated. Thus, the pulvinar input ensures differential V1 responses to external and self-generated motion. Integration of external sensory information with information about body movement may be a general mechanism for sensory cortices to distinguish between self-generated and external stimuli.


Asunto(s)
Movimiento , Movimientos Sacádicos , Corteza Visual , Animales , Ratones , Movimiento/fisiología , Estimulación Luminosa , Retina/fisiología , Movimientos Sacádicos/fisiología , Núcleos Talámicos/fisiología , Corteza Visual/fisiología
3.
Nat Methods ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898094

RESUMEN

Volumetric imaging of synaptic transmission in vivo requires high spatial and high temporal resolution. Shaping the wavefront of two-photon fluorescence excitation light, we developed Bessel-droplet foci for high-contrast and high-resolution volumetric imaging of synapses. Applying our method to imaging glutamate release, we demonstrated high-throughput mapping of excitatory inputs at >1,000 synapses per volume and >500 dendritic spines per neuron in vivo and unveiled previously unseen features of functional synaptic organization in the mouse primary visual cortex.

4.
Nature ; 582(7813): 545-549, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499655

RESUMEN

Animals sense the environment through pathways that link sensory organs to the brain. In the visual system, these feedforward pathways define the classical feedforward receptive field (ffRF), the area in space in which visual stimuli excite a neuron1. The visual system also uses visual context-the visual scene surrounding a stimulus-to predict the content of the stimulus2, and accordingly, neurons have been identified that are excited by stimuli outside their ffRF3-8. However, the mechanisms that generate excitation to stimuli outside the ffRF are unclear. Here we show that feedback projections onto excitatory neurons in the mouse primary visual cortex generate a second receptive field that is driven by stimuli outside the ffRF. The stimulation of this feedback receptive field (fbRF) elicits responses that are slower and are delayed in comparison with those resulting from the stimulation of the ffRF. These responses are preferentially reduced by anaesthesia and by silencing higher visual areas. Feedback inputs from higher visual areas have scattered receptive fields relative to their putative targets in the primary visual cortex, which enables the generation of the fbRF. Neurons with fbRFs are located in cortical layers that receive strong feedback projections and are absent in the main input layer, which is consistent with a laminar processing hierarchy. The observation that large, uniform stimuli-which cover both the fbRF and the ffRF-suppress these responses indicates that the fbRF and the ffRF are mutually antagonistic. Whereas somatostatin-expressing inhibitory neurons are driven by these large stimuli, inhibitory neurons that express parvalbumin and vasoactive intestinal peptide have mutually antagonistic fbRF and ffRF, similar to excitatory neurons. Feedback projections may therefore enable neurons to use context to estimate information that is missing from the ffRF and to report differences in stimulus features across visual space, regardless of whether excitation occurs inside or outside the ffRF. By complementing the ffRF, the fbRF that we identify here could contribute to predictive processing.


Asunto(s)
Retroalimentación Fisiológica , Neuronas/fisiología , Estimulación Luminosa , Corteza Visual/citología , Corteza Visual/fisiología , Vías Visuales , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Factores de Tiempo
5.
J Neurosci ; 43(9): 1540-1554, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653192

RESUMEN

The behavioral state of a mammal impacts how the brain responds to visual stimuli as early as in the dorsolateral geniculate nucleus of the thalamus (dLGN), the primary relay of visual information to the cortex. A clear example of this is the markedly stronger response of dLGN neurons to higher temporal frequencies of the visual stimulus in alert as compared with quiescent animals. The dLGN receives strong feedback from the visual cortex, yet whether this feedback contributes to these state-dependent responses to visual stimuli is poorly understood. Here, we show that in male and female mice, silencing cortico-thalamic feedback profoundly reduces state-dependent differences in the response of dLGN neurons to visual stimuli. This holds true for dLGN responses to both temporal and spatial features of the visual stimulus. These results reveal that the state-dependent shift of the response to visual stimuli in an early stage of visual processing depends on cortico-thalamic feedback.SIGNIFICANCE STATEMENT Brain state affects even the earliest stages of sensory processing. A clear example of this phenomenon is the change in thalamic responses to visual stimuli depending on whether the animal's brain is in an alert or quiescent state. Despite the radical impact that brain state has on sensory processing, the underlying circuits are still poorly understood. Here, we show that both the temporal and spatial response properties of thalamic neurons to visual stimuli depend on the state of the animal and, crucially, that this state-dependent shift relies on the feedback projection from visual cortex to thalamus.


Asunto(s)
Tálamo , Corteza Visual , Masculino , Femenino , Animales , Ratones , Retroalimentación , Tálamo/fisiología , Percepción Visual , Cuerpos Geniculados/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Mamíferos
6.
Nature ; 558(7708): 80-86, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29795349

RESUMEN

Detecting the direction of motion of an object is essential for our representation of the visual environment. The visual cortex is one of the main stages in the mammalian nervous system in which the direction of motion may be computed de novo. Experiments and theories indicate that cortical neurons respond selectively to motion direction by combining inputs that provide information about distinct spatial locations with distinct time delays. Despite the importance of this spatiotemporal offset for direction selectivity, its origin and cellular mechanisms are not fully understood. We show that approximately 80 ± 10 thalamic neurons, which respond with distinct time courses to stimuli in distinct locations, excite mouse visual cortical neurons during visual stimulation. The integration of thalamic inputs with the appropriate spatiotemporal offset provides cortical neurons with a primordial bias for direction selectivity. These data show how cortical neurons selectively combine the spatiotemporal response diversity of thalamic neurons to extract fundamental features of the visual world.


Asunto(s)
Sinapsis/fisiología , Tálamo/citología , Tálamo/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Animales , Femenino , Masculino , Ratones , Movimiento (Física) , Neuronas/fisiología , Estimulación Luminosa , Factores de Tiempo
8.
Nature ; 538(7625): 383-387, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27732573

RESUMEN

The mammalian visual cortex massively innervates the brainstem, a phylogenetically older structure, via cortico-fugal axonal projections. Many cortico-fugal projections target brainstem nuclei that mediate innate motor behaviours, but the function of these projections remains poorly understood. A prime example of such behaviours is the optokinetic reflex (OKR), an innate eye movement mediated by the brainstem accessory optic system, that stabilizes images on the retina as the animal moves through the environment and is thus crucial for vision. The OKR is plastic, allowing the amplitude of this reflex to be adaptively adjusted relative to other oculomotor reflexes and thereby ensuring image stability throughout life. Although the plasticity of the OKR is thought to involve subcortical structures such as the cerebellum and vestibular nuclei, cortical lesions have suggested that the visual cortex might also be involved. Here we show that projections from the mouse visual cortex to the accessory optic system promote the adaptive plasticity of the OKR. OKR potentiation, a compensatory plastic increase in the amplitude of the OKR in response to vestibular impairment, is diminished by silencing visual cortex. Furthermore, targeted ablation of a sparse population of cortico-fugal neurons that specifically project to the accessory optic system severely impairs OKR potentiation. Finally, OKR potentiation results from an enhanced drive exerted by the visual cortex onto the accessory optic system. Thus, cortico-fugal projections to the brainstem enable the visual cortex, an area that has been principally studied for its sensory processing function, to plastically adapt the execution of innate motor behaviours.


Asunto(s)
Tronco Encefálico/fisiología , Movimientos Oculares/fisiología , Plasticidad Neuronal/fisiología , Reflejo/fisiología , Corteza Visual/fisiología , Animales , Cerebelo/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Neuronas/fisiología , Retina/fisiología , Núcleos Vestibulares/fisiología , Corteza Visual/citología
9.
J Neurosci ; 39(24): 4684-4693, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30948479

RESUMEN

Recurrent synaptic connections between neighboring neurons are a key feature of mammalian cortex, accounting for the vast majority of cortical inputs. Although computational models indicate that reorganization of recurrent connectivity is a primary driver of experience-dependent cortical tuning, the true biological features of recurrent network plasticity are not well identified. Indeed, whether rewiring of connections between cortical neurons occurs during behavioral training, as is widely predicted, remains unknown. Here, we probe M1 recurrent circuits following motor training in adult male rats and find robust synaptic reorganization among functionally related layer 5 neurons, resulting in a 2.5-fold increase in recurrent connection probability. This reorganization is specific to the neuronal subpopulation most relevant for executing the trained motor skill, and behavioral performance was impaired following targeted molecular inhibition of this subpopulation. In contrast, recurrent connectivity is unaffected among neighboring layer 5 neurons largely unrelated to the trained behavior. Training-related corticospinal cells also express increased excitability following training. These findings establish the presence of selective modifications in recurrent cortical networks in adulthood following training.SIGNIFICANCE STATEMENT Recurrent synaptic connections between neighboring neurons are characteristic of cortical architecture, and modifications to these circuits are thought to underlie in part learning in the adult brain. We now show that there are robust changes in recurrent connections in the rat motor cortex upon training on a novel motor task. Motor training results in a 2.5-fold increase in recurrent connectivity, but only within the neuronal subpopulation most relevant for executing the new motor behavior; recurrent connectivity is unaffected among adjoining neurons that do not execute the trained behavior. These findings demonstrate selective reorganization of recurrent synaptic connections in the adult neocortex following novel motor experience, and illuminate fundamental properties of cortical function and plasticity.


Asunto(s)
Aprendizaje/fisiología , Destreza Motora/fisiología , Tractos Piramidales/fisiología , Animales , Animales Recién Nacidos , Fenómenos Electrofisiológicos/fisiología , Fuerza de la Mano , Masculino , Inhibición Neural/fisiología , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Desempeño Psicomotor/fisiología , Ratas , Ratas Endogámicas F344 , Caminata
10.
Nature ; 511(7511): 596-600, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25043046

RESUMEN

The relationship between synaptic excitation and inhibition (E/I ratio), two opposing forces in the mammalian cerebral cortex, affects many cortical functions such as feature selectivity and gain. Individual pyramidal cells show stable E/I ratios in time despite fluctuating cortical activity levels. This is because when excitation increases, inhibition increases proportionally through the increased recruitment of inhibitory neurons, a phenomenon referred to as excitation-inhibition balance. However, little is known about the distribution of E/I ratios across pyramidal cells. Through their highly divergent axons, inhibitory neurons indiscriminately contact most neighbouring pyramidal cells. Is inhibition homogeneously distributed or is it individually matched to the different amounts of excitation received by distinct pyramidal cells? Here we discover that pyramidal cells in layer 2/3 of mouse primary visual cortex each receive inhibition in a similar proportion to their excitation. As a consequence, E/I ratios are equalized across pyramidal cells. This matched inhibition is mediated by parvalbumin-expressing but not somatostatin-expressing inhibitory cells and results from the independent adjustment of synapses originating from individual parvalbumin-expressing cells targeting different pyramidal cells. Furthermore, this match is activity-dependent as it is disrupted by perturbing pyramidal cell activity. Thus, the equalization of E/I ratios across pyramidal cells reveals an unexpected degree of order in the spatial distribution of synaptic strengths and indicates that the relationship between the cortex's two opposing forces is stabilized not only in time but also in space.


Asunto(s)
Neuronas/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Inhibición Neural/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología
11.
PLoS Comput Biol ; 14(11): e1006535, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30419013

RESUMEN

Despite advances in experimental techniques and accumulation of large datasets concerning the composition and properties of the cortex, quantitative modeling of cortical circuits under in-vivo-like conditions remains challenging. Here we report and publicly release a biophysically detailed circuit model of layer 4 in the mouse primary visual cortex, receiving thalamo-cortical visual inputs. The 45,000-neuron model was subjected to a battery of visual stimuli, and results were compared to published work and new in vivo experiments. Simulations reproduced a variety of observations, including effects of optogenetic perturbations. Critical to the agreement between responses in silico and in vivo were the rules of functional synaptic connectivity between neurons. Interestingly, after extreme simplification the model still performed satisfactorily on many measurements, although quantitative agreement with experiments suffered. These results emphasize the importance of functional rules of cortical wiring and enable a next generation of data-driven models of in vivo neural activity and computations.


Asunto(s)
Corteza Visual/fisiología , Animales , Simulación por Computador , Ratones , Modelos Neurológicos , Neuronas/metabolismo , Sinapsis/metabolismo , Tálamo/fisiología , Corteza Visual/citología
12.
Nat Rev Neurosci ; 14(3): 202-16, 2013 03.
Artículo en Inglés | MEDLINE | ID: mdl-23385869

RESUMEN

A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus.


Asunto(s)
Algoritmos , Corteza Cerebral/citología , Interneuronas/clasificación , Interneuronas/citología , Terminología como Asunto , Ácido gamma-Aminobutírico/metabolismo , Animales , Teorema de Bayes , Corteza Cerebral/metabolismo , Análisis por Conglomerados , Humanos , Interneuronas/metabolismo
13.
Nature ; 483(7387): 47-52, 2012 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-22367547

RESUMEN

After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.


Asunto(s)
Vías Nerviosas/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Ratones , Modelos Neurológicos , Inhibición Neural/efectos de la radiación , Vías Nerviosas/efectos de la radiación , Neuronas/fisiología , Neuronas/efectos de la radiación , Estimulación Luminosa , Sinapsis/metabolismo , Sinapsis/efectos de la radiación , Núcleos Talámicos/citología , Núcleos Talámicos/fisiología , Núcleos Talámicos/efectos de la radiación , Corteza Visual/anatomía & histología , Corteza Visual/efectos de la radiación , Percepción Visual/efectos de la radiación
14.
Nature ; 490(7419): 226-31, 2012 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-23060193

RESUMEN

The response of cortical neurons to a sensory stimulus is modulated by the context. In the visual cortex, for example, stimulation of a pyramidal cell's receptive-field surround can attenuate the cell's response to a stimulus in the centre of its receptive field, a phenomenon called surround suppression. Whether cortical circuits contribute to surround suppression or whether the phenomenon is entirely relayed from earlier stages of visual processing is debated. Here we show that, in contrast to pyramidal cells, the response of somatostatin-expressing inhibitory neurons (SOMs) in the superficial layers of the mouse visual cortex increases with stimulation of the receptive-field surround. This difference results from the preferential excitation of SOMs by horizontal cortical axons. By perturbing the activity of SOMs, we show that these neurons contribute to pyramidal cells' surround suppression. These results establish a cortical circuit for surround suppression and attribute a particular function to a genetically defined type of inhibitory neuron.


Asunto(s)
Sumación de Potenciales Postsinápticos/fisiología , Corteza Visual/fisiología , Animales , Axones/metabolismo , Ratones , Células Piramidales/metabolismo , Neuronas Retinianas/citología , Neuronas Retinianas/fisiología
15.
J Neurosci ; 35(11): 4719-28, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25788688

RESUMEN

Behavior is derived from the configuration of synaptic connectivity among functionally diverse neurons. Fine motor behavior is absent at birth in most mammals but gradually emerges during subsequent postnatal corticospinal system maturation; the nature of circuit development and reorganization during this period has been largely unexplored. We investigated connectivity and synaptic signaling among functionally distinct corticospinal populations in Fischer 344 rats from postnatal day 18 through 75 using retrograde tracer injections into specific spinal cord segments associated with distinct aspects of forelimb function. Primary motor cortex slices were prepared enabling simultaneous patch-clamp recordings of up to four labeled corticospinal neurons and testing of 3489 potential synaptic connections. We find that, in immature animals, local connectivity is biased toward corticospinal neurons projecting to the same spinal cord segment; this within-population connectivity significantly decreases through maturation until connection frequency is similar between neurons projecting to the same (within-population) or different (across-population) spinal segments. Concomitantly, postnatal maturation is associated with a significant reduction in synaptic efficacy over time and an increase in intrinsic neuronal excitability, altering how excitation is effectively transmitted across recurrent corticospinal networks. Collectively, the postnatal emergence of fine motor control is associated with a relative broadening of connectivity between functionally diverse cortical motor neurons and changes in synaptic properties that could enable the emergence of smaller independent networks, enabling fine motor movement. These changes in synaptic patterning and physiological function provide a basis for the increased capabilities of the mature versus developing brain.


Asunto(s)
Corteza Motora/crecimiento & desarrollo , Red Nerviosa/crecimiento & desarrollo , Tractos Piramidales/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Masculino , Corteza Motora/citología , Red Nerviosa/citología , Tractos Piramidales/citología , Ratas , Ratas Endogámicas F344
16.
Nature ; 464(7292): 1155-60, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20414303

RESUMEN

The cerebral cortex constructs a coherent representation of the world by integrating distinct features of the sensory environment. Although these features are processed vertically across cortical layers, horizontal projections interconnecting neighbouring cortical domains allow these features to be processed in a context-dependent manner. Despite the wealth of physiological and psychophysical studies addressing the function of horizontal projections, how they coordinate activity among cortical domains remains poorly understood. We addressed this question by selectively activating horizontal projection neurons in mouse somatosensory cortex, and determined how the resulting spatial pattern of excitation and inhibition affects cortical activity. We found that horizontal projections suppress superficial layers while simultaneously activating deeper cortical output layers. This layer-specific modulation does not result from a spatial separation of excitation and inhibition, but from a layer-specific ratio between these two opposing conductances. Through this mechanism, cortical domains exploit horizontal projections to compete for cortical space.


Asunto(s)
Vías Nerviosas/citología , Vías Nerviosas/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Potenciales de Acción/fisiología , Envejecimiento/fisiología , Animales , Axones/metabolismo , Channelrhodopsins , Ratones , Modelos Neurológicos , Inhibición Neural/fisiología , Células Piramidales/metabolismo , Corteza Somatosensorial/anatomía & histología
17.
Nature ; 461(7266): 930-9, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19829373

RESUMEN

Electrophysiology, the 'gold standard' for investigating neuronal signalling, is being challenged by a new generation of optical probes. Together with new forms of microscopy, these probes allow us to measure and control neuronal signals with spatial resolution and genetic specificity that already greatly surpass those of electrophysiology. We predict that the photon will progressively replace the electron for probing neuronal function, particularly for targeted stimulation and silencing of neuronal populations. Although electrophysiological characterization of channels, cells and neural circuits will remain necessary, new combinations of electrophysiology and imaging should lead to transformational discoveries in neuroscience.


Asunto(s)
Electrofisiología/métodos , Luz , Neurociencias/métodos , Óptica y Fotónica/métodos , Animales , Calcio/metabolismo , Electrofisiología/instrumentación , Electrofisiología/tendencias
19.
J Physiol ; 591(4): 799-805, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23027823

RESUMEN

Cerebral cortex is a highly sophisticated computing machine, feeding on information provided by the senses, which is integrated with other, internally generated patterns of neural activity, to trigger behavioural outputs. Bit by bit, we are coming to understand how this may occur, but still, the nature of the 'cortical code' remains one of the greatest challenges in science. As with other great scientific challenges of the past, fresh insights have come from a coalescence of different experimental and theoretical approaches. These theoretical considerations are typically reserved for cortical function rather than cortical pathology. This approach, though, may also shed light on cortical dysfunction. The particular focus of this review is epilepsy; we will argue that the information capacity of different brain states provides a means of understanding, and even assessing, the impact and locality of the epileptic pathology. Epileptic discharges, on account of their all-consuming and stereotyped nature, represent instances where the information capacity of the network is massively compromised. These intense discharges also prevent normal processing in surrounding territories, but in a different way, through enhanced inhibition in these territories. Information processing is further compromised during the period of post-ictal suppression, during interictal bursts, and also at other times, through more subtle changes in synaptic function. We also comment on information processing in other more physiological brain states.


Asunto(s)
Encéfalo/fisiología , Epilepsia/fisiopatología , Animales , Humanos , Neuronas/fisiología , Ácido gamma-Aminobutírico/fisiología
20.
Neuron ; 111(14): 2247-2257.e7, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37172584

RESUMEN

Cortical responses to visual stimuli are believed to rely on the geniculo-striate pathway. However, recent work has challenged this notion by showing that responses in the postrhinal cortex (POR), a visual cortical area, instead depend on the tecto-thalamic pathway, which conveys visual information to the cortex via the superior colliculus (SC). Does POR's SC-dependence point to a wider system of tecto-thalamic cortical visual areas? What information might this system extract from the visual world? We discovered multiple mouse cortical areas whose visual responses rely on SC, with the most lateral showing the strongest SC-dependence. This system is driven by a genetically defined cell type that connects the SC to the pulvinar thalamic nucleus. Finally, we show that SC-dependent cortices distinguish self-generated from externally generated visual motion. Hence, lateral visual areas comprise a system that relies on the tecto-thalamic pathway and contributes to processing visual motion as animals move through the environment.


Asunto(s)
Pulvinar , Colículos Superiores , Ratones , Animales , Colículos Superiores/fisiología , Vías Visuales/fisiología , Tálamo , Núcleos Talámicos , Cuerpos Geniculados/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA