Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mar Pollut Bull ; 174: 113305, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35090290

RESUMEN

Spatial uptake patterns of microplastics (MP) by marine species are largely unexplored under field conditions. A novel "biodeposit trap" that measure uptake and egestion of MP by suspension-feeders through the analysis of their biodeposits, was designed and used to estimate the spatial variation of these processes by mussels in field conditions. Traps containing wild or farmed mussels or control empty shells were deployed at three sites characterised by different MP concentrations and water flow conditions. A different MP dimensional composition was observed between MP pools present in biodeposit and control traps, with the latter shifted towards higher dimensional range (0.05-5 mm). Conversely, mussels accumulated small MP (0.02-0.05 mm) into their biodeposits without any significant difference between wild and farmed specimens. MP uptake rates were on average 4-5 times higher at the site where MP contamination was expected to be highest and where water flow conditions were considered moderate.


Asunto(s)
Mytilus edulis , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
2.
Mar Pollut Bull ; 153: 110983, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32275538

RESUMEN

Salt marshes in urban watersheds are prone to microplastics (MP) pollution due to their hydrological characteristics and exposure to urban runoff, but little is known about MP distributions in species from these habitats. In the current study, MP occurrence was determined in six benthic invertebrate species from salt marshes along the North Adriatic lagoons (Italy) and the Schelde estuary (Netherlands). The species represented different feeding modes and sediment localisation. 96% of the analysed specimens (330) did not contain any MP, which was consistent across different regions and sites. Suspension and facultative deposit-feeding bivalves exhibited a lower MP occurrence (0.5-3%) relative to omnivores (95%) but contained a much more variable distribution of MP sizes, shapes and polymers. The study provides indications that MP physicochemical properties and species' ecological traits could all influence MP exposure, uptake and retention in benthic organisms inhabiting European salt marsh ecosystems.


Asunto(s)
Monitoreo del Ambiente/métodos , Microplásticos , Plásticos , Contaminantes del Agua/análisis , Humedales , Animales , Ecosistema , Hábitos , Italia , Países Bajos
3.
Environ Pollut ; 251: 117-127, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31075692

RESUMEN

Microplastic (MP) has become ubiquitous in the marine environment. Its threat to marine organisms has been demonstrated under laboratory conditions, yet studies on wild populations still face methodological difficulties. We reviewed the methods used to separate MP from soft animal tissues and highlighted a lack of standardised methodologies, particularly critical for synthetic microfibres. We further compared enzymatic and a potassium hydroxide (KOH)-based alkaline digestion protocols on wild crabs (Carcinus aestuarii) collected from three coastal lagoons in the north Adriatic Sea and on laboratory-prepared synthetic polyester (PES) of different colour and polypropylene (PP). We compared the cost-effectiveness of the two methods, together with the potential for adverse quantitative or qualitative effects on MP that could alter the capability of the polymers to be recognised via microscopic or spectroscopic techniques. Only 5.5% of the 180 examined crabs contained MP in their gastrointestinal tracts, with a notably high quantitative variability between individuals (from 1 to 117 particles per individual). All MP found was exclusively microfibres, mainly PES, with a mean length (±SE) of 0.5 ±â€¯0.03 mm. The two digestion methods provided comparable estimates on wild crabs and did not cause any visible physical or chemical alterations on laboratory-prepared microfibres treated for up to 4 days. KOH solution was faster and cheaper compared to the enzymatic extraction, involving fewer procedural steps and therefore reducing the risk of airborne contamination. With digestion times longer than 4 days, KOH caused morphological alterations of some of the PES microfibres, which did not occur with the enzymatic digestion. This suggests that KOH is effective for the digestion of small marine invertebrates or biological samples for which shorter digestion time is required, while enzymatic extraction should be considered as alternative for larger organisms or sample sizes requiring longer digestion times.


Asunto(s)
Braquiuros/metabolismo , Monitoreo del Ambiente/métodos , Plásticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Organismos Acuáticos , Poliésteres , Polímeros , Alimentos Marinos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA