Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 21(24): 13047-13057, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31168549

RESUMEN

Fast recombination of electrons from semiconductors with the oxidized redox species in the electrolyte represents a major bottleneck in the improvement of ZnO-based dye-sensitized solar cells (DSSCs). While processes at the semiconductor-electrolyte interface are well studied on TiO2 electrodes, the interactions of the ZnO surface with the electrolyte solution in DSSCs are less explored. This work aims at clarifying the different impact of the two contrasting redox couples I3-/I- or [Co(bpy-pz)2]3+/2+ (bpy-pz = bis(6-(1H-pyrazol-1-yl)-2,2'-bipyridine)) in electrolytes containing either no additives or Li+ ions and/or 4-tert-butlypyridine (TBP) in DSSCs using screen-printed nanoparticulate TiO2 (NP-TiO2) or electrodeposited ZnO (ED-ZnO) photoanodes sensitized with the indoline dye DN216. A detailed photoelectrochemical study is performed to investigate light absorption, charge transfer and mass transport in these cells. We demonstrate that the chemical nature of the semiconductor directly influences the affinity of adsorbates. This drastically influences the energy levels and recombination kinetics at the semiconductor-electrolyte interface, electron and ion transport in the porous system as well as light absorption of dye molecules by the Stark effect. The present investigation reveals the origin of major performance losses in DSSCs based on ED-ZnO photoanodes as well as the relevance of ionic interactions with NP-TiO2 photoanodes that can both serve as the starting point for rationally guided improvement of their conversion efficiencies.

2.
J Am Chem Soc ; 139(46): 16830-16837, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29064235

RESUMEN

We report here the development of coreactant-based electrogenerated chemiluminescence (ECL) as a surface-confined microscopy to image single cells and their membrane proteins. Labeling the entire cell membrane allows one to demonstrate that, by contrast with fluorescence, ECL emission is only detected from fluorophores located in the immediate vicinity of the electrode surface (i.e., 1-2 µm). Then, to present the potential diagnostic applications of our approach, we selected carbon nanotubes (CNT)-based inkjet-printed disposable electrodes for the direct ECL imaging of a labeled plasma receptor overexpressed on tumor cells. The ECL fluorophore was linked to an antibody and enabled to localize the ECL generation on the cancer cell membrane in close proximity to the electrode surface. Such a result is intrinsically associated with the unique ECL mechanism and is rationalized by considering the limited lifetimes of the electrogenerated coreactant radicals. The electrochemical stimulus used for luminescence generation does not suffer from background signals, such as the typical autofluorescence of biological samples. The presented surface-confined ECL microscopy should find promising applications in ultrasensitive single cell imaging assays.

3.
Langmuir ; 33(29): 7231-7238, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28669191

RESUMEN

We describe a method to confine electrochemiluminescence (ECL) at the oil-water interface of emulsion droplets that are stabilized by luminophore-grafted microgels. These hydrogel nanoparticles incorporating covalently bound Ru(bpy)32+ as the luminophore are irreversibly adsorbed at the interface of micrometric oil droplets dispersed in a continuous aqueous phase. We study the electrochemical and ECL properties of this multiscale system, composed of a collection of droplets in close contact in the presence of two types of model coreactants. ECL emission is observed upon oxidation of the coreactant and of the luminophore. ECL imaging confirms that light is emitted at the surface of oil droplets. Interestingly, light emission is observed more than 100 µm far from the electrode. It is possibly due to the interconnection between redox-active microgels, making an entangled two-dimensional network at the dodecane-water interface and/or to some optical effects related to the light propagation and refraction at different interfaces in this multiphasic system. Confining ECL in such an inhomogeneous medium should find promising applications in the study of compartmentalized systems, interfacial phenomena, sensors, and analysis of single oil droplets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA