Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 24(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066067

RESUMEN

(1) Background: Traditional gait assessment methods have limitations like time-consuming procedures, the requirement of skilled personnel, soft tissue artifacts, and high costs. Various 3D time scanning techniques are emerging to overcome these issues. This study compares a 3D temporal scanning system (Move4D) with an inertial motion capture system (Xsens) to evaluate their reliability and accuracy in assessing gait spatiotemporal parameters and joint kinematics. (2) Methods: This study included 13 healthy people and one hemiplegic patient, and it examined stance time, swing time, cycle time, and stride length. Statistical analysis included paired samples t-test, Bland-Altman plot, and the intraclass correlation coefficient (ICC). (3) Results: A high degree of agreement and no significant difference (p > 0.05) between the two measurement systems have been found for stance time, swing time, and cycle time. Evaluation of stride length shows a significant difference (p < 0.05) between Xsens and Move4D. The highest root-mean-square error (RMSE) was found in hip flexion/extension (RMSE = 10.99°); (4) Conclusions: The present work demonstrated that the system Move4D can estimate gait spatiotemporal parameters (gait phases duration and cycle time) and joint angles with reliability and accuracy comparable to Xsens. This study allows further innovative research using 4D (3D over time) scanning for quantitative gait assessment in clinical practice.


Asunto(s)
Marcha , Fotogrametría , Humanos , Fenómenos Biomecánicos/fisiología , Marcha/fisiología , Fotogrametría/métodos , Masculino , Adulto , Femenino , Articulaciones/fisiología , Imagenología Tridimensional/métodos , Análisis de la Marcha/métodos , Reproducibilidad de los Resultados , Adulto Joven , Rango del Movimiento Articular/fisiología
2.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38894476

RESUMEN

(1) Background: Marker-based 3D motion capture systems (MBS) are considered the gold standard in gait analysis. However, they have limitations for which markerless camera-based 3D motion capture systems (MCBS) could provide a solution. The aim of this systematic review and meta-analysis is to compare the accuracy, validity, and reliability of MCBS and MBS. (2) Methods: A total of 2047 papers were systematically searched according to PRISMA guidelines on 7 February 2024, in two different databases: Pubmed (1339) and WoS (708). The COSMIN-tool and EBRO guidelines were used to assess risk of bias and level of evidence. (3) Results: After full text screening, 22 papers were included. Spatiotemporal parameters showed overall good to excellent accuracy, validity, and reliability. For kinematic variables, hip and knee showed moderate to excellent agreement between the systems, while for the ankle joint, poor concurrent validity and reliability were measured. The accuracy and concurrent validity of walking speed were considered excellent in all cases, with only a small bias. The meta-analysis of the inter-rater reliability and concurrent validity of walking speed, step time, and step length resulted in a good-to-excellent intraclass correlation coefficient (ICC) (0.81; 0.98). (4) Discussion and conclusions: MCBS are comparable in terms of accuracy, concurrent validity, and reliability to MBS in spatiotemporal parameters. Additionally, kinematic parameters for hip and knee in the sagittal plane are considered most valid and reliable but lack valid and accurate measurement outcomes in transverse and frontal planes. Customization and standardization of methodological procedures are necessary for future research to adequately compare protocols in clinical settings, with more attention to patient populations.


Asunto(s)
Análisis de la Marcha , Marcha , Humanos , Análisis de la Marcha/métodos , Marcha/fisiología , Imagenología Tridimensional/métodos , Fenómenos Biomecánicos/fisiología , Reproducibilidad de los Resultados , Captura de Movimiento
3.
Sensors (Basel) ; 23(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37447782

RESUMEN

(1) Background: Even though music therapy is acknowledged to have positive benefits in neurology, there is still a lack of knowledge in the literature about the applicability of music treatments in clinical practice with a neurological population using wearable devices. (2) Methods: a systematic review was conducted following PRISMA 2020 guidelines on the 29 October 2022, searching in five databases: PubMed, PEDro, Medline, Web of Science, and Science Direct. (3) Results: A total of 2964 articles were found, including 413 from PubMed, 248 from Web of Science, 2110 from Science Direct, 163 from Medline, and none from PEDro. Duplicate entries, of which there were 1262, were eliminated. In the first screening phase, 1702 papers were screened for title and abstract. Subsequently, 1667 papers were removed, based on population, duplicate, outcome, and poor study design. Only 15 studies were considered after 35 papers had their full texts verified. Results showed significant values of spatiotemporal gait parameters in music-based therapy rhythmic auditory stimulation (RAS), including speed, stride length, cadence, and ROM. (4) Conclusions: The current findings confirm the value of music-based therapy RAS as a favorable and effective tool to implement in the health care system for the rehabilitation of patients with movement disorders.


Asunto(s)
Musicoterapia , Música , Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Humanos , Musicoterapia/métodos , Estimulación Acústica/métodos , Marcha/fisiología , Enfermedad de Parkinson/rehabilitación
4.
Sensors (Basel) ; 21(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923514

RESUMEN

Smart clothing plays a big role to foster innovation and to. boost health and well-being, improving the quality of the life of people, especially when addressed to niche users with particular needs related to their health. Designing smart apparel, in order to monitor physical and physiological functions in older users, is a crucial asset that user centered design is exploring, balancing needs expressed by the users with technological requirements related to the design process. In this paper, the authors describe a user centered methodology for the design of smart garments based on the evaluation of users' acceptance of smart clothing. This comparison method can be considered as similar to a simplified version of the quality function deployment tool, and is used to evaluate the general response of each garment typology to different categories of requirements, determining the propensity of the older user to the utilization of the developed product. The suggested methodology aims at introducing in the design process a tool to evaluate and compare developed solutions, reducing complexity in design processes by providing a tool for the comparison of significant solutions, correlating quantitative and qualitative factors.


Asunto(s)
Vestuario , Materiales Inteligentes , Anciano , Humanos
5.
Sensors (Basel) ; 21(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209518

RESUMEN

This study aims to measure and compare spatiotemporal gait parameters in nineteen subjects using a full wearable inertial mocap system Xsens (MVN Awinda, Netherlands) and a photoelectronic system one-meter OptoGaitTM (Microgait, Italy) on a treadmill imposing a walking speed of 5 km/h. A total of eleven steps were considered for each subject constituting a dataset of 209 samples from which spatiotemporal parameters (SPT) were calculated. The step length measurement was determined using two methods. The first one considers the calculation of step length based on the inverted pendulum model, while the second considers an anthropometric approach that correlates the stature with an anthropometric coefficient. Although the absolute agreement and consistency were found for the calculation of the stance phase, cadence and gait cycle, from our study, differences in SPT were found between the two systems. Mean square error (MSE) calculation of their speed (m/s) with respect to the imposed speed on a treadmill reveals a smaller error (MSE = 0.0008) using the OptoGaitTM. Overall, our results indicate that the accurate detection of heel strike and toe-off have an influence on phases and sub-phases for the entire acquisition. Future study in this domain should investigate how to design and integrate better products and algorithms aiming to solve the problematic issues already identified in this study without limiting the user's need and performance in a different environment.


Asunto(s)
Caminata , Dispositivos Electrónicos Vestibles , Fenómenos Biomecánicos , Marcha , Humanos , Italia , Países Bajos
6.
PeerJ ; 11: e16223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901461

RESUMEN

Purpose: The purpose of this study was to identify how generalized fatigue along with hormonal changes throughout the menstrual cycle affects trunk variability and local dynamic stability during gait. Methods: General fatigue was induced by an incremental test on a treadmill, and the menstrual cycle was divided into three phases: follicular, ovulatory, and luteal. Twenty-six healthy, young volunteers (aged 18 to 28 years) who did not use oral contraceptives or other hormonal drugs with a regular menstrual cycle participated in the study. They walked on the treadmill for 4 min at the preferred speed, before the incremental test, followed by four sets of 4 min alternating between walking, also at preferred speed, and resting. From trunk kinematic data, the following were extracted: the mean of the standard deviation along strides, as a measure of variability, and the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS). Results: After the incremental test, variability increased, and LDS decreased. However, they showed a tendency to return to the initial value faster in women compared to previous results for men. In the follicular phase, which has less hormonal release, the volunteers had an almost complete recovery in LDS soon after the first rest interval, suggesting that female hormones can interfere with fatigue recovery. Nevertheless, concerning the LDS, it was significantly lower in the luteal phase than in the follicular phase. Conclusion: Women that are not taking oral contraceptives should be aware that they are susceptible to increased gait instabilities in the pre-menstrual phase after strenuous activities.


Asunto(s)
Prueba de Esfuerzo , Fatiga Muscular , Masculino , Humanos , Femenino , Marcha , Ciclo Menstrual , Anticonceptivos Orales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA