Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Neurosci ; 25(1): 10, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424488

RESUMEN

TBI is a leading cause of death and disability in young people and older adults worldwide. There is no gold standard treatment for TBI besides surgical interventions and symptomatic relief. Post-injury infections, such as lower respiratory tract and surgical site infections or meningitis are frequent complications following TBI. Whether the use of preventive and/or symptomatic antibiotic therapy improves patient mortality and outcome is an ongoing matter of debate. In contrast, results from animal models of TBI suggest translational perspectives and support the hypothesis that antibiotics, independent of their anti-microbial activity, alleviate secondary injury and improve neurological outcomes. These beneficial effects were largely attributed to the inhibition of neuroinflammation and neuronal cell death. In this review, we briefly outline current treatment options, including antibiotic therapy, for patients with TBI. We then summarize the therapeutic effects of the most commonly tested antibiotics in TBI animal models, highlight studies identifying molecular targets of antibiotics, and discuss similarities and differences in their mechanistic modes of action.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Animales , Humanos , Anciano , Adolescente , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Mol Psychiatry ; 27(12): 5070-5085, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224261

RESUMEN

St. John's wort is an herb, long used in folk medicine for the treatment of mild depression. Its antidepressant constituent, hyperforin, has properties such as chemical instability and induction of drug-drug interactions that preclude its use for individual pharmacotherapies. Here we identify the transient receptor potential canonical 6 channel (TRPC6) as a druggable target to control anxious and depressive behavior and as a requirement for hyperforin antidepressant action. We demonstrate that TRPC6 deficiency in mice not only results in anxious and depressive behavior, but also reduces excitability of hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. Using electrophysiology and targeted mutagenesis, we show that hyperforin activates the channel via a specific binding motif at TRPC6. We performed an analysis of hyperforin action to develop a new antidepressant drug that uses the same TRPC6 target mechanism for its antidepressant action. We synthesized the hyperforin analog Hyp13, which shows similar binding to TRPC6 and recapitulates TRPC6-dependent anxiolytic and antidepressant effects in mice. Hyp13 does not activate pregnan-X-receptor (PXR) and thereby loses the potential to induce drug-drug interactions. This may provide a new approach to develop better treatments for depression, since depression remains one of the most treatment-resistant mental disorders, warranting the development of effective drugs based on naturally occurring compounds.


Asunto(s)
Antidepresivos , Hypericum , Floroglucinol , Canal Catiónico TRPC6 , Terpenos , Animales , Ratones , Antidepresivos/aislamiento & purificación , Antidepresivos/farmacología , Hypericum/química , Canal Catiónico TRPC6/agonistas , Canal Catiónico TRPC6/química , Floroglucinol/aislamiento & purificación , Floroglucinol/farmacología , Terpenos/aislamiento & purificación , Terpenos/farmacología
3.
Angew Chem Int Ed Engl ; 62(1): e202214906, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36345795

RESUMEN

A catalysis-based regioselective 1,4-fluorofunctionalization of trifluoromethyl substituted 1,3-dienes has been developed to access compact, highly functionalized products. The process allows E,Z-mixed dienes to be processed to a single E-alkene isomer, and leverages an inexpensive and operationally convenient I(I)/I(III) catalysis platform. The first example of catalytic 1,4-difluorination is disclosed and subsequently evolved to enable 1,4-hetero-difunctionalization, which allows δ-fluoro-alcohol and amine derivatives to be forged in a single operation. The protocol is compatible with a variety of nucleophiles including fluoride, nitriles, carboxylic acids, alcohols and even water thereby allowing highly functionalized products, with a stereocenter bearing both C(sp3 )-F and C(sp3 )-CF3 groups, to be generated rapidly. Scalability (up to 3 mmol), and facile post-reaction modifications are demonstrated to underscore the utility of the method in expanding organofluorine chemical space.


Asunto(s)
Alquenos , Polienos , Isomerismo , Catálisis , Alcoholes
4.
J Neuroinflammation ; 19(1): 148, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705992

RESUMEN

BACKGROUND: Under inflammatory conditions, the activation of corticotropin-releasing factor (CRF) receptor has been shown to inhibit pain through opioid peptide release from immune cells or neurons. CRF's effects on human and animal pain modulation depend, however, on the distribution of its receptor subtypes 1 and 2 (CRF-R1 and CRF-R2) along the neuraxis of pain transmission. The objective of this study is to investigate the respective role of each CRF receptor subtype on centrally administered CRF-induced antinociception during inflammatory pain. METHODS: The present study investigated the role of intracerebroventricular (i.c.v.) CRF receptor agonists on nociception and the contribution of cerebral CRF-R1 and/or CRF-R2 subtypes in an animal model of Freund's complete adjuvant (FCA)-induced hind paw inflammation. Methods used included behavioral experiments, immunofluorescence confocal analysis, and reverse transcriptase-polymerase chain reaction. RESULTS: Intracerebroventricular, but systemically inactive, doses of CRF elicited potent, dose-dependent antinociceptive effects in inflammatory pain which were significantly antagonized by i.c.v. CRF-R1-selective antagonist NBI 27914 (by approximately 60%) but less by CRF-R2-selective antagonist K41498 (by only 20%). In line with these findings, i.c.v. administration of CRF-R1 agonist stressin I produced superior control of inflammatory pain over CRF-R2 agonist urocortin-2. Intriguingly, i.c.v. opioid antagonist naloxone significantly reversed the CRF as well as CRF-R1 agonist-elicited pain inhibition. Consistent with existing evidence of high CRF concentrations in brain areas such as the thalamus, hypothalamus, locus coeruleus, and periaqueductal gray following its i.c.v. administration, double-immunofluorescence confocal microscopy demonstrated primarily CRF-R1-positive neurons that expressed opioid peptides in these pain-relevant brain areas. Finally, PCR analysis confirmed the predominant expression of the CRF-R1 over CRF-R2 in representative brain areas such as the hypothalamus. CONCLUSION: Taken together, these findings suggest that CRF-R1 in opioid-peptide-containing brain areas plays an important role in the modulation of inflammatory pain and may be a useful therapeutic target for inflammatory pain control.


Asunto(s)
Hormona Liberadora de Corticotropina , Receptores de Hormona Liberadora de Corticotropina , Animales , Encéfalo/metabolismo , Péptidos Opioides/metabolismo , Dolor/tratamiento farmacológico
5.
FASEB J ; 35(2): e21329, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33484186

RESUMEN

L1 syndrome is a rare developmental disorder characterized by hydrocephalus of varying severity, intellectual deficits, spasticity of the legs, and adducted thumbs. Therapy is limited to symptomatic relief. Numerous gene mutations in the L1 cell adhesion molecule (L1CAM, hereafter abbreviated L1) were identified in L1 syndrome patients, and those affecting the extracellular domain of this transmembrane type 1 glycoprotein show the most severe phenotypes. Previously analyzed rodent models of the L1 syndrome focused on L1-deficient animals or mouse mutants with abrogated cell surface expression of L1, making it difficult to test L1 function-triggering mimetic compounds with potential therapeutic value. To overcome this impasse, we generated a novel L1 syndrome mouse with a mutation of aspartic acid at position 201 in the extracellular part of L1 (p.D201N, hereafter termed L1-201) that displays a cell surface-exposed L1 accessible to the L1 mimetics. Behavioral assessment revealed an increased neurological deficit score and increased locomotor activity in male L1-201 mice carrying the mutation on the X-chromosome. Histological analyses of L1-201 mice showed features of the L1 syndrome, including enlarged ventricles and reduced size of the corpus callosum. Expression levels of L1-201 protein as well as extent of cell surface biotinylation and immunofluorescence labelling of cultured cerebellar neurons were normal. Importantly, treatment of these cultures with the L1 mimetic compounds duloxetine, crotamiton, and trimebutine rescued impaired cell migration and survival as well as neuritogenesis. Altogether, the novel L1 syndrome mouse model provides a first experimental proof-of-principle for the potential therapeutic value of L1 mimetic compounds.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Discapacidad Intelectual/tratamiento farmacológico , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Peptidomiméticos/uso terapéutico , Paraplejía Espástica Hereditaria/tratamiento farmacológico , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Cerebelo/patología , Ventrículos Cerebrales/metabolismo , Ventrículos Cerebrales/patología , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Clorhidrato de Duloxetina/farmacología , Clorhidrato de Duloxetina/uso terapéutico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Molécula L1 de Adhesión de Célula Nerviosa/genética , Neurogénesis , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Peptidomiméticos/farmacología , Fenotipo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/patología , Toluidinas/farmacología , Toluidinas/uso terapéutico , Trimebutino/farmacología , Trimebutino/uso terapéutico
6.
Brain Behav Immun ; 106: 49-66, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35933030

RESUMEN

BACKGROUND: There is a need for early therapeutic interventions after traumatic brain injury (TBI) to prevent neurodegeneration. Microglia/macrophage (M/M) depletion and repopulation after treatment with colony stimulating factor 1 receptor (CSF1R) inhibitors reduces neurodegeneration. The present study investigates short- and long-term consequences after CSF1R inhibition during the early phase after TBI. METHODS: Sex-matched mice were subjected to TBI and CSF1R inhibition by PLX3397 for 5 days and sacrificed at 5 or 30 days post injury (dpi). Neurological deficits were monitored and brain tissues were examined for histo- and molecular pathological markers. RNAseq was performed with 30 dpi TBI samples. RESULTS: At 5 dpi, CSF1R inhibition attenuated the TBI-induced perilesional M/M increase and associated gene expressions by up to 50%. M/M attenuation did not affect structural brain damage at this time-point, impaired hematoma clearance, and had no effect on IL-1ß expression. At 30 dpi, following drug discontinuation at 5 dpi and M/M repopulation, CSF1R inhibition attenuated brain tissue loss regardless of sex, as well as hippocampal atrophy and thalamic neuronal loss in male mice. Selected gene markers of brain inflammation and apoptosis were reduced in males but increased in females after early CSF1R inhibition as compared to corresponding TBI vehicle groups. Neurological outcome in behaving mice was almost not affected. RNAseq and gene set enrichment analysis (GSEA) of injured brains at 30 dpi revealed more genes associated with dendritic spines and synapse function after early CSF1R inhibition as compared to vehicle, suggesting improved neuronal maintenance and recovery. In TBI vehicle mice, GSEA showed high oxidative phosphorylation, oxidoreductase activity and ribosomal biogenesis suggesting oxidative stress and increased abundance of metabolically highly active cells. More genes associated with immune processes and phagocytosis in PLX3397 treated females vs males, suggesting sex-specific differences in response to early CSF1R inhibition after TBI. CONCLUSIONS: M/M attenuation after CSF1R inhibition via PLX3397 during the early phase of TBI reduces long-term brain tissue loss, improves neuronal maintenance and fosters synapse recovery. Overall effects were not sex-specific but there is evidence that male mice benefit more than female mice.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Factor Estimulante de Colonias de Macrófagos , Aminopiridinas , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/farmacología , Pirroles , Receptores del Factor Estimulante de Colonias/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo
7.
BMC Anesthesiol ; 22(1): 60, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246037

RESUMEN

BACKGROUND: The benzodiazepine midazolam is a γ-aminobutyric acid (GABA)-A receptor agonist frequently used for sedation or stress control in patients suffering from traumatic brain injury (TBI). However, experimental studies on benzodiazepines have reported divergent results, raising concerns about its widespread use in patients. Some studies indicate that benzodiazepine-mediated potentiation of GABAergic neurotransmission is detrimental in brain-injured animals. However, other experimental investigations demonstrate neuroprotective effects, especially in pretreatment paradigms. This study investigated whether single-bolus midazolam administration influences secondary brain damage post-TBI. METHODS: Two different midazolam dosages (0.5 and 5 mg/kg BW), a combination of midazolam and its competitive antagonist flumazenil, or vehicle solution (NaCl 0.9%) was injected intravenously to mice 24 h after experimental TBI induced by controlled cortical impact. Mice were evaluated for neurological and motor deficits using a 15-point neuroscore and the rotarod test. Histopathological brain damage and mRNA expression of inflammatory marker genes were analyzed using quantitative polymerase chain reaction three days after insult. RESULTS: Histological brain damage was not affected by posttraumatic midazolam administration. Midazolam impaired functional recovery, and this effect could not be counteracted by administering the midazolam antagonist flumazenil. An increase in IL-1ß mRNA levels due to postinjury application of midazolam was reversible by flumazenil administration. However, other inflammatory parameters were not affected. CONCLUSIONS: This study merely reports minor effects of a postinjury midazolam application. Further studies focusing on a time-dependent analysis of posttraumatic benzodiazepine administration are required.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Benzodiazepinas , Encéfalo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Flumazenil/efectos adversos , Humanos , Ratones , Midazolam , ARN Mensajero
8.
Angew Chem Int Ed Engl ; 61(32): e202205508, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35583965

RESUMEN

The regio- and enantio-selective, intermolecular vicinal fluoroamination of α-trifluoromethyl styrenes has been achieved by enantioselective II /IIII catalysis. Leveraging C2 -symmetric resorcinol-based aryl iodide catalysts, it has been possible to intercept the transient iodonium intermediate using simple nitriles, which function as both the solvent and nucleophile. In situ Ritter reaction provides direct access to the corresponding amides (up to 89 % yield, e.r. 93 : 7). This main group catalysis paradigm inverts the intrinsic regioselectivity of the uncatalyzed process, thereby providing facile access to tertiary, benzylic stereocenters bearing both CF3 and F groups. Privileged phenethylamine pharmacophores can be generated in which there is complete local partial charge inversion (CF3δ- /Fδ- versus CH3δ+ /Hδ+ ). Crystallographic analyses of representative ß-fluoroamide products reveal highly pre-organized conformations that manifest the stereoelectronic gauche effect.


Asunto(s)
Alquenos , Yodo , Alquenos/química , Catálisis , Yoduros , Yodo/química , Estereoisomerismo
9.
J Neurochem ; 158(2): 342-357, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899947

RESUMEN

Progranulin (PGRN) is a neurotrophic and anti-inflammatory factor with protective effects in animal models of ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury (TBI). Administration of recombinant (r) PGRN prevents exaggerated brain pathology after TBI in Grn-deficient mice, suggesting that local injection of recombinant progranulin (rPGRN) provides therapeutic benefit in the acute phase of TBI. To test this hypothesis, we subjected adult male C57Bl/6N mice to the controlled cortical impact model of TBI, administered a single dose of rPGRN intracerebroventricularly (ICV) shortly before the injury, and examined behavioral and biological effects up to 5 days post injury (dpi). The anti-inflammatory bioactivity of rPGRN was confirmed by its capability to inhibit the inflammation-induced hypertrophy of murine primary microglia and astrocytes in vitro. In C57Bl/6N mice, however, ICV administration of rPGRN failed to attenuate behavioral deficits over the 5-day observation period. (Immuno)histological gene and protein expression analyses at 5 dpi did not reveal a therapeutic benefit in terms of brain injury size, brain inflammation, glia activation, cell numbers in neurogenic niches, and neuronal damage. Instead, we observed a failure of TBI-induced mRNA upregulation of the tight junction protein occludin and increased extravasation of serum immunoglobulin G into the brain parenchyma at 5 dpi. In conclusion, single ICV administration of rPGRN had not the expected protective effects in the acute phase of murine TBI, but appeared to cause an aggravation of blood-brain barrier disruption. The data raise questions about putative PGRN-boosting approaches in other types of brain injuries and disease.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Lesiones Traumáticas del Encéfalo/patología , Progranulinas/toxicidad , Animales , Animales Recién Nacidos , Astrocitos/patología , Conducta Animal/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/psicología , Encefalitis/patología , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Cultivo Primario de Células , Progranulinas/administración & dosificación , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/toxicidad , Proteínas de Uniones Estrechas/biosíntesis , Proteínas de Uniones Estrechas/genética
10.
Cardiovasc Drugs Ther ; 35(4): 733-743, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33484395

RESUMEN

PURPOSE: Myocardial opioid receptors were demonstrated in animals and humans and seem to colocalize with membranous and sarcolemmal calcium channels of the excitation-contraction coupling in the left ventricle (LV). Therefore, this study investigated whether blockade of the cardiac opioid system by naltrexone would affect cardiac function and neurohumoral parameters in Wistar rats with volume overload-induced heart failure. METHODS: Volume overload in Wistar rats was induced by an aortocaval fistula (ACF). Left ventricular cardiac opioid receptors were identified by immunohistochemistry and their messenger ribonucleic acid (mRNA) as well as their endogenous ligand mRNA quantified by real-time polymerase chain reaction (RT-PCR). Following continuous delivery of either the opioid receptor antagonist naltrexone or vehicle via minipumps (n = 5 rats each), hemodynamic and humoral parameters were assessed 28 days after ACF induction. Sham-operated animals served as controls. RESULTS: In ACF rats mu-, delta-, and kappa-opioid receptors colocalized with voltage-gated L-type Ca2+ channels in left ventricular cardiomyocytes. Chronic naltrexone treatment of ACF rats reduced central venous pressure (CVP) and left ventricular end-diastolic pressure (LVEDP), and improved systolic and diastolic left ventricular functions. Concomitantly, rat brain natriuretic peptide (rBNP-45) and angiotensin-2 plasma concentrations which were elevated during ACF were significantly diminished following naltrexone treatment. In parallel, chronic naltrexone significantly reduced mu-, delta-, and kappa-opioid receptor mRNA, while it increased the endogenous opioid peptide mRNA compared to controls. CONCLUSION: Opioid receptor blockade by naltrexone leads to improved LV function and decreases in rBNP-45 and angiotensin-2 plasma levels. In parallel, naltrexone resulted in opioid receptor mRNA downregulation and an elevated intrinsic tone of endogenous opioid peptides possibly reflecting a potentially cardiodepressant effect of the cardiac opioid system during volume overload.


Asunto(s)
Miocitos Cardíacos/efectos de los fármacos , Naltrexona/farmacocinética , Angiotensina II/sangre , Animales , Modelos Animales de Enfermedad , Pruebas de Función Cardíaca , Antagonistas de Narcóticos/farmacocinética , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Wistar , Receptores Opioides/metabolismo , Resultado del Tratamiento , Disfunción Ventricular Izquierda/tratamiento farmacológico , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología , Intoxicación por Agua/metabolismo , Intoxicación por Agua/fisiopatología
11.
Mediators Inflamm ; 2021: 8835730, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33531878

RESUMEN

Traumatic brain injury (TBI) represents a major cause of death and disability in early adulthood. Concomitant extracranial injury such as long bone fracture was reported to exacerbate TBI pathology. However, early reciprocal effects and mechanisms have been barely investigated. To address this issue, C57BL/6N mice were subjected to either the controlled cortical impact (CCI) model of TBI, fracture of the left femur (FF), combined injury (CCI+FF), or sham procedure. Behavioral alterations were monitored until 5 days post injury (dpi), followed by (immuno-)histology, gene and protein expression analyses using quantitative PCR, western blot, and ELISA. We found that CCI+FF mice exhibited increased neurological impairments, reduced recovery, and altered anxiety-related behavior compared to single injury groups. At 5 dpi, cerebral lesion size was not affected by combined injury but exaggerated hippocampal substance loss and increased perilesional astrogliosis were observed in CCI+FF mice compared to isolated CCI. Bone gene expression of the osteogenic markers Runx2, osteocalcin, alkaline phosphatase, and bone sialoprotein was induced by fracture injury but attenuated by concomitant TBI. Plasma concentrations of the biomarkers osteopontin and progranulin were elevated in CCI+FF mice compared to other experimental groups. Taken together, using a murine model of TBI and femoral fracture, we report early reciprocal impairments of brain tissue maintenance, behavioral recovery, and bone repair gene expression. Increased circulating levels of the biomarkers osteopontin and progranulin indicate ongoing tissue inflammation and repair. Our results may have implications for future therapeutic approaches to interfere with the pathological crosstalk between TBI and concomitant bone fracture.


Asunto(s)
Analgésicos/farmacología , Lesiones Traumáticas del Encéfalo/fisiopatología , Fracturas del Fémur/fisiopatología , Osteopontina/metabolismo , Progranulinas/metabolismo , Fosfatasa Alcalina/metabolismo , Animales , Conducta Animal , Biomarcadores/metabolismo , Encéfalo/patología , Lesiones Encefálicas/metabolismo , Modelos Animales de Enfermedad , Femenino , Fémur , Gliosis/metabolismo , Hipocampo/metabolismo , Inflamación , Ratones , Ratones Endogámicos C57BL
12.
Eur J Anaesthesiol ; 38(4): 411-421, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399378

RESUMEN

BACKGROUND: The treatment of haemorrhagic shock is a challenging task. Colloids have been regarded as standard treatment, but their safety and benefit have been the subject of controversial debates. Negative effects, including renal failure and increased mortality, have resulted in restrictions on their administration. The cerebral effects of different infusion regimens are largely unknown. OBJECTIVES: The current study investigated the impact of gelatine-polysuccinate, hydroxyethyl starch (HES) and balanced electrolyte solution (BES) on cerebral integrity, focusing on cerebral inflammation, apoptosis and blood flow in pigs. DESIGN: Randomised experimental study. SETTING: University-affiliated large animal research unit. ANIMALS: Twenty-four juvenile pigs aged 8 to 12 weeks. INTERVENTION: Haemorrhagic shock was induced by controlled arterial blood withdrawal to achieve a combination of relevant blood loss (30 to 40 ml kg-1) and haemodynamic deterioration. After 30 min of shock, fluid resuscitation was started with either gelatine-polysuccinate, HES or BES. The animals were then monitored for 4 h. MAIN OUTCOME MEASURES: Cerebral perfusion and diffusion were measured via arterial-spin-labelling MRI. Peripheral tissue perfusion was evaluated via white light spectroscopy. Cortical and hippocampal samples were collected at the end of the experiment. The numbers of cerebral cell nuclei were counted and mRNA expression of markers for cerebral apoptosis [glucose transporter protein type 1 (SLC2A), lipocalin 2 (LCN-2), aquaporin-4 (AQP4)] and inflammation [IL-6, TNF-α, glial fibrillary acidic protein (GFAP)] were determined. RESULTS: The three fluid protocols all stabilised the macrocirculation. Fluid resuscitation significantly increased the cerebral perfusion. Gelatine-polysuccinate and HES initially led to a higher cardiac output but caused haemodilution. Cerebral cell counts (as cells µm-2) were lower after colloid administration in the cortex (gelatine-polysuccinate, 1.8 ±â€Š0.3; HES, 1.9 ±â€Š0.4; each P < 0.05 vs. BES, 2.3 ±â€Š0.2) and the hippocampus (gelatine-polysuccinate, 0.8 ±â€Š0.2; HES, 0.9 ±â€Š0.2; each P < 0.05 vs. BES, 1.1 ±â€Š0.1). After gelatine-polysuccinate, the hippocampal SLC2A and GFAP were lower. After gelatine-polysuccinate, the cortical LCN-2 and TNF-α expression levels were increased (each P < 0.05 vs. BES). CONCLUSION: In a porcine model, fluid resuscitation by colloids, particularly gelatine-polysuccinate, was associated with the occurrence of cerebral injury. ETHICAL APPROVAL NUMBER: 23 177-07/G 15-1-092; 01/2016.


Asunto(s)
Choque Hemorrágico , Animales , Fluidoterapia , Derivados de Hidroxietil Almidón , Estudios Prospectivos , Resucitación , Choque Hemorrágico/tratamiento farmacológico , Porcinos
13.
Anaesthesist ; 70(7): 551-562, 2021 07.
Artículo en Alemán | MEDLINE | ID: mdl-34196726

RESUMEN

Since the Act on the medical use of cannabis, at which cannabis-based medicines and cannabinoids became law, there has been an exponential increase in prescriptions for the acquisition of cannabis for medical purposes. The aim of this leading article is to compile and assess the currently available relevant clinical evidence for the use of cannabis and cannabinoids for treatment of acute and chronic pain. Based on the systematic literature review "Cannabis-Potential and risks (CAPRIS)" commissioned by the German Federal Ministry of Health and the recently published recommendations of the European Pain Federation EFIC, this article aims to give an orientation aid for the decision-making process in the clinical routine.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Dolor Crónico , Marihuana Medicinal , Cannabinoides/efectos adversos , Dolor Crónico/tratamiento farmacológico , Humanos , Marihuana Medicinal/uso terapéutico
14.
Angew Chem Int Ed Engl ; 60(12): 6430-6434, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33427355

RESUMEN

An I(I)/(III) catalysis strategy to construct an enantioenriched fluorinated isostere of the i Pr group is reported. The difluorination of readily accessible α-CF3 -styrenes is enabled by the in situ generation of a chiral ArIF2 species to forge a stereocentre with the substituents F, CH2 F and CF3 (up to 95 %, >20:1 vicinal:geminal difluorination). The replacement of the metabolically labile benzylic proton results in a highly preorganised scaffold as was determined by X-ray crystallography (π→σ* and stereoelectronic gauche σ→σ* interactions). A process of catalyst editing is disclosed in which preliminary validation of enantioselectivity is placed on a structural foundation.

15.
J Neurochem ; 152(1): 72-91, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31563141

RESUMEN

Peripheral nerve injury elicits spinal microgliosis, contributing to neuropathic pain. The aurora kinases A (AURKA), B (AURKB), and C (AURKC) are potential therapeutic targets in proliferating cells. However, their role has not been clarified in microglia. The aim of this study was to examine the regulation of aurora kinases and their roles and druggability in spinal microgliosis and neuropathic pain. Sprague-Dawley rats received chronic constriction injury (CCI). Gene expression of aurora kinases A-C was evaluated by quantitative RT-PCR and western blot, respectively, in spinal cords at 1, 3, 7, and 14 days after CCI. AURKB gene and protein expression was up-regulated concomitantly with the development of spinal microgliosis and neuropathic pain. Using lentiviral over-expression and adeno-associated viral knockdown approaches, the function of AURKB was further investigated by western blot, immunohistochemistry, RNA sequencing, and pain behavior tests. We found that AURKB over-expression in naive rats caused spinal microgliosis and pain hypersensitivity, whereas AURKB knockdown reduced microgliosis and alleviated CCI-induced neuropathic pain. Accordingly, RNA sequencing data revealed down-regulation of genes critically involved in signaling pathways associated with spinal microgliosis and neuropathic pain after AURKB knockdown in CCI rats. To examine its therapeutic potential for treatment of neuropathic pain, animals were treated intrathecally with the pharmacological AURKB inhibitor AZD1152-HQPA resulting in the alleviation of CCI-induced pain. Taken together, our findings indicated that AURKB plays a critical role in spinal microgliosis and neuropathic pain. Targeting AURKB may be an efficient method for treatment of neuropathic pain subsequent to peripheral nerve injury.


Asunto(s)
Aurora Quinasa B/antagonistas & inhibidores , Microglía/fisiología , Neuralgia/terapia , Traumatismos de los Nervios Periféricos/fisiopatología , Animales , Aurora Quinasa B/genética , Aurora Quinasa B/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Inhibidores Enzimáticos/uso terapéutico , Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Microglía/enzimología , Microglía/patología , Neuralgia/enzimología , Traumatismos de los Nervios Periféricos/enzimología , Ratas , Ratas Sprague-Dawley , Médula Espinal/enzimología , Médula Espinal/patología
16.
J Neuroinflammation ; 17(1): 183, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532285

RESUMEN

BACKGROUND: Recently, mineralocorticoid receptors (MR) were identified in peripheral nociceptive neurons, and their acute antagonism was responsible for immediate and short-lasting (non-genomic) antinociceptive effects. The same neurons were shown to produce the endogenous ligand aldosterone by the enzyme aldosterone synthase. METHODS: Here, we investigate whether endogenous aldosterone contributes to inflammation-induced hyperalgesia via the distinct genomic regulation of specific pain signaling molecules in an animal model of Freund's complete adjuvant (FCA)-induced hindpaw inflammation. RESULTS: Chronic intrathecal application of MR antagonist canrenoate-K (over 4 days) attenuated nociceptive behavior in rats with FCA hindpaw inflammation suggesting a tonic activation of neuronal MR by endogenous aldosterone. Consistently, double immunofluorescence confocal microscopy showed abundant co-localization of MR with several pain signaling molecules such as TRPV1, CGRP, Nav1.8, and trkA whose enhanced expression of mRNA and proteins during inflammation was downregulated following i.t. canrenoate-K. More importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by continuous intrathecal delivery of a specific aldosterone synthase inhibitor prevented the inflammation-induced enhanced transcriptional expression of TRPV1, CGRP, Nav1.8, and trkA and subsequently attenuated nociceptive behavior. Evidence for such a genomic effect of endogenous aldosterone was supported by the demonstration of an enhanced nuclear translocation of MR in peripheral sensory dorsal root ganglia (DRG) neurons. CONCLUSION: Taken together, chronic inhibition of local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons may contribute to long-lasting downregulation of specific pain signaling molecules and may, thus, persistently reduce inflammation-induced hyperalgesia.


Asunto(s)
Aldosterona/metabolismo , Hiperalgesia/metabolismo , Inflamación/metabolismo , Dolor/metabolismo , Animales , Citocromo P-450 CYP11B2/antagonistas & inhibidores , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Ratas , Ratas Wistar , Receptores de Mineralocorticoides/efectos de los fármacos , Receptores de Mineralocorticoides/metabolismo
17.
Ann Neurol ; 85(5): 667-680, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30843275

RESUMEN

OBJECTIVE: Plasminogen activator inhibitor-1 (PAI-1) is the key endogenous inhibitor of fibrinolysis, and enhances clot formation after injury. In traumatic brain injury, dysregulation of fibrinolysis may lead to sustained microthrombosis and accelerated lesion expansion. In the present study, we hypothesized that PAI-1 mediates post-traumatic malfunction of coagulation, with inhibition or genetic depletion of PAI-1 attenuating clot formation and lesion expansion after brain trauma. METHODS: We evaluated PAI-1 as a possible new target in a mouse controlled cortical impact (CCI) model of traumatic brain injury. We performed the pharmacological inhibition of PAI-1 with PAI-039 and stimulation by tranexamic acid, and we confirmed our results in PAI-1-deficient animals. RESULTS: PAI-1 mRNA was time-dependently upregulated, with a 305-fold peak 12 hours after CCI, which effectively counteracted the 2- to 3-fold increase in cerebral tissue-type/urokinase plasminogen activator expression. PAI-039 reduced brain lesion volume by 26% at 24 hours and 43% at 5 days after insult. This treatment also attenuated neuronal apoptosis and improved neurofunctional outcome. Moreover, intravital microscopy demonstrated reduced post-traumatic thrombus formation in the pericontusional cortical microvasculature. In PAI-1-deficient mice, the therapeutic effect of PAI-039 was absent. These mice also displayed 13% reduced brain damage compared with wild type. In contrast, inhibition of fibrinolysis with tranexamic acid increased lesion volume by 25% compared with vehicle. INTERPRETATION: This study identifies impaired fibrinolysis as a critical process in post-traumatic secondary brain damage and suggests that PAI-1 may be a central endogenous inhibitor of the fibrinolytic pathway, promoting a procoagulatory state and clot formation in the cerebral microvasculature. Ann Neurol 2019;85:667-680.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/patología , Fibrinólisis/fisiología , Serpina E2/metabolismo , Animales , Encéfalo/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Fibrinólisis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Serpina E2/antagonistas & inhibidores
18.
Anesthesiology ; 132(4): 867-880, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32011337

RESUMEN

BACKGROUND: Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas). In this study, the authors investigated evidence for a local endogenous aldosterone production through its key processing enzyme aldosterone synthase within peripheral nociceptive neurons. METHODS: In male Wistar rats (n = 5 to 8 per group) with Freund's complete adjuvant hind paw inflammation, the authors examined aldosterone, aldosterone synthase, and mineralocorticoid receptor expression in peripheral sensory neurons using quantitative reverse transcriptase-polymerase chain reaction, Western blot, immunohistochemistry, and immunoprecipitation. Moreover, the authors explored the nociceptive behavioral changes after selective mineralocorticoid receptor antagonist, canrenoate-K, or specific aldosterone synthase inhibitor application. RESULTS: In rats with Freund's complete adjuvant-induced hind paw inflammation subcutaneous and intrathecal application of mineralocorticoid receptor antagonist, canrenoate-K, rapidly and dose-dependently attenuated nociceptive behavior (94 and 48% reduction in mean paw pressure thresholds, respectively), suggesting a tonic activation of neuronal mineralocorticoid receptors by an endogenous ligand. Indeed, aldosterone immunoreactivity was abundant in peptidergic nociceptive neurons of dorsal root ganglia and colocalized predominantly with its processing enzyme aldosterone synthase and mineralocorticoid receptors. Moreover, aldosterone and its synthesizing enzyme were significantly upregulated in peripheral sensory neurons under inflammatory conditions. The membrane mineralocorticoid receptor consistently coimmunoprecipitated with endogenous aldosterone, confirming a functional link between mineralocorticoid receptors and its endogenous ligand. Importantly, inhibition of endogenous aldosterone production in peripheral sensory neurons by a specific aldosterone synthase inhibitor attenuated nociceptive behavior after hind paw inflammation (a 32% reduction in paw pressure thresholds; inflammation, 47 ± 2 [mean ± SD] vs. inflammation + aldosterone synthase inhibitor, 62 ± 2). CONCLUSIONS: Local production of aldosterone by its processing enzyme aldosterone synthase within peripheral sensory neurons contributes to ongoing mechanical hypersensitivity during local inflammation via intrinsic activation of neuronal mineralocorticoid receptors.


Asunto(s)
Citocromo P-450 CYP11B2/biosíntesis , Hiperalgesia/metabolismo , Dimensión del Dolor/métodos , Células Receptoras Sensoriales/metabolismo , Adyuvantes Inmunológicos/toxicidad , Aldosterona/biosíntesis , Animales , Adyuvante de Freund/toxicidad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Dimensión del Dolor/efectos de los fármacos , Estimulación Física/efectos adversos , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos
19.
Mediators Inflamm ; 2020: 4301072, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33273889

RESUMEN

A complex inflammatory process mediated by proinflammatory cytokines and prostaglandins commonly occurs in the synovial tissue of patients with joint trauma (JT), osteoarthritis (OA), and rheumatoid arthritis (RA). This study systematically investigated the distinct expression profile of prostaglandin E2 (PGE2), its processing enzymes (COX-2), and microsomal PGES-1 (mPGES-1) as well as the corresponding prostanoid receptor subtypes (EP1-4) in representative samples of synovial tissue from these patients (JT, OA, and RA). Quantitative TaqMan®-PCR and double immunofluorescence confocal microscopy of synovial tissue determined the abundance and exact immune cell types expressing these target molecules. Our results demonstrated that PGE2 and its processing enzymes COX-2 and mPGES-1 were highest in the synovial tissue of RA, followed by the synovial tissue of OA and JT patients. Corresponding prostanoid receptor, subtypes EP3 were highly expressed in the synovium of RA, followed by the synovial tissue of OA and JT patients. These proinflammatory target molecules were distinctly identified in JT patients mostly in synovial granulocytes, in OA patients predominantly in synovial macrophages and fibroblasts, whereas in RA patients mainly in synovial fibroblasts and plasma cells. Our findings show a distinct expression profile of EP receptor subtypes and PGE2 as well as the corresponding processing enzymes in human synovium that modulate the inflammatory process in JT, OA, and RA patients.


Asunto(s)
Inflamación/metabolismo , Artropatías/metabolismo , Receptores de Prostaglandina E/metabolismo , Anciano , Artritis Reumatoide/metabolismo , Biopsia , Ciclooxigenasa 2/biosíntesis , Citocinas/metabolismo , Dinoprostona/biosíntesis , Femenino , Fibroblastos/metabolismo , Humanos , Ligandos , Macrófagos/metabolismo , Masculino , Microscopía Confocal , Persona de Mediana Edad , Osteoartritis/metabolismo , Prostaglandina-E Sintasas/biosíntesis , Membrana Sinovial/metabolismo
20.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32545631

RESUMEN

Necroptotic cell death is characterized by an activation of RIPK3 and MLKL that leads to plasma membrane permeabilization and the release of immunostimulatory cellular contents. High levels of chondrocyte death occur following intra-articular trauma, which frequently leads to post-traumatic osteoarthritis development. The aim of this study is to assess necroptosis levels in cartilage post-trauma and to examine whether chondrocyte necroptotic mechanisms may be investigated and modified in vitro. Fractured human and murine cartilage, analysed immunohistochemically for necroptosis marker expression, demonstrated significantly higher levels of RIPK3 and phospho-MLKL than uninjured controls. Primary murine chondrocytes stimulated in vitro with the TNFα and AKT-inhibitor alongside the pan-caspase inhibitor Z-VAD-fmk exhibited a significant loss of metabolic activity and viability, accompanied by an increase in MLKL phosphorylation, which was rescued by further treatment of chondrocytes with necrostatin-1. Transmission electron microscopy demonstrated morphological features of necroptosis in chondrocytes following TNFα and Z-VAD-fmk treatment. Release of dsDNA from necroptotic chondrocytes was found to be significantly increased compared to controls. This study demonstrates that cartilage trauma leads to a high prevalence of necroptotic chondrocyte death, which can be induced and inhibited in vitro, indicating that both necroptosis and its consequential release of immunostimulatory cellular contents are potential therapeutic targets in post-traumatic arthritis treatment.


Asunto(s)
Condrocitos/citología , Fracturas Intraarticulares/patología , Necroptosis , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Clorometilcetonas de Aminoácidos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Humanos , Imidazoles/farmacología , Indoles/farmacología , Fracturas Intraarticulares/metabolismo , Ratones , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA