Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(2): 963-975, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36584307

RESUMEN

Microplastics (MPs) are one of the most abundant and widespread anthropogenic pollutants worldwide. In addition to the global spread and threats of plastic to native species by carrying toxic substances, its slow degradation rate and resulting long retention time in the environment constitute a problem that is still poorly understood. In this study, five of the most manufactured plastic types were weathered under simulated beach conditions for 18 months in freshwater, brackish water, and seawater. Those included polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). PP was the first polymer type that fragmented after 9 months of weathering and influenced the pH of the surrounding water. Molecular surface changes were detected for all polymers, just after the first week. Hydroxyl bonds were one of the first groups incorporated into the polymers, weakening 2-3 weeks later. Carbonyl groups were also measured early, but with significantly different developments with time between the polymer types. Differences in degradation rates were proven between the water media, with the fastest degradation in seawater compared to brackish water and freshwater for PE and PP. These results are consistent with previous findings on MPs aged under environmental conditions and provide initial long-term observations of MP degradation pathways under simulated environmental conditions. These findings are valuable for assessing the fate and hazards of MPs in aquatic systems.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Microplásticos , Contaminantes Químicos del Agua/análisis , Polipropilenos/química , Polímeros , Polietileno/análisis , Agua , Monitoreo del Ambiente
2.
Sci Adv ; 10(34): eadp2584, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39167655

RESUMEN

Sediment gravity flows are ubiquitous agents of transport, erosion, and deposition across Earth's surface, including terrestrial debris flows, snow avalanches, and submarine turbidity currents. Sediment gravity flows typically erode material along their path (bulking), which can dramatically increase their size, speed, and run-out distance. Hence, flow bulking is a first-order control on flow evolution and underpins predictive modeling approaches and geohazard assessments. Quantifying bulking in submarine systems is problematic because of their large-scale and inaccessible nature, complex stratigraphy, and poorly understood source areas. Here, we map the deposits and erosive destruction of a giant submarine gravity flow from source to sink. The small initial failure (~1.5 cubic kilometers) entrained over 100 times its starting volume, catastrophically evolving into a giant flow with a total volume of ~162 cubic kilometers and a run-out distance of ~2000 kilometers. Entrainment of mud was the critical fuel, which promoted run-away flow growth and extreme levels of erosion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA