Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Mater ; 22(6): 754-761, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37095227

RESUMEN

Surface strain is widely employed in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on active sites. However, in situ or operando strain measurements are experimentally challenging, especially on nanomaterials. Here we exploit coherent diffraction at the new fourth-generation Extremely Brilliant Source of the European Synchrotron Radiation Facility to map and quantify strain within individual Pt catalyst nanoparticles under electrochemical control. Three-dimensional nanoresolution strain microscopy, together with density functional theory and atomistic simulations, show evidence of heterogeneous and potential-dependent strain distribution between highly coordinated ({100} and {111} facets) and undercoordinated atoms (edges and corners), as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These dynamic structural relationships directly inform the design of strain-engineered nanocatalysts for energy storage and conversion applications.

2.
Small ; 17(32): e2101360, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34216427

RESUMEN

2D non-layered materials (2DNLMs) featuring massive undercoordinated surface atoms and obvious lattice distortion have shown great promise in catalytic/electrocatalytic applications, but their controllable synthesis remains challenging. Here, a new type of ultrathin carbon-wrapped titanium nitride nanomesh (TiN NM@C) is prepared using a rationally designed nano-confinement topochemical conversion strategy. The ultrathin 2D geometry with well-distributed pores offers TiN NM@C plentiful exposed active sites and rapid charge transfer, leading to outstanding electrocatalytic performance tackling the sluggish sulfur redox kinetics in lithium-sulfur batteries (LSBs). LSBs employing TiN NM@C electrocatalyst deliver excellent rate capabilities (e.g., 304 mAh g-1 at 10 C), greatly outperforming that of using TiN nanoparticles embedded in carbon nanosheets (TiN NPs@C) as a benchmark. More impressively, a free-standing electrode for LSBs with a high sulfur loading of 7.3 mg cm-2 is demonstrated, showing a high peak areal capacity of 5.6 mAh cm-2 at a high current density of 6.1 mA cm-2 . This work provides a new avenue for the facile and controllable fabrication of 2DNLMs with impressive electrocatalysis for LSBs as well as other energy conversion and storage technologies.

3.
Small ; 17(18): e2007702, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33738928

RESUMEN

Studying model nanoparticles is one approach to better understand the structural evolution of a catalyst during reactions. These nanoparticles feature well-defined faceting, offering the possibility to extract structural information as a function of facet orientation and compare it to theoretical simulations. Using Bragg Coherent X-ray Diffraction Imaging, the uniformity of electrochemically synthesized model catalysts is studied, here high-index faceted tetrahexahedral (THH) platinum nanoparticles at ambient conditions. 3D images of an individual nanoparticle are obtained, assessing not only its shape but also the specific components of the displacement and strain fields both at the surface of the nanocrystal and inside. The study reveals structural diversity of shapes and defects, and shows that the THH platinum nanoparticles present strain build-up close to facets and edges. A facet recognition algorithm is further applied to the imaged nanoparticles and provides facet-dependent structural information for all measured nanoparticles. In the context of strain engineering for model catalysts, this study provides insight into the shape-controlled synthesis of platinum nanoparticles with high-index facets.

4.
Small ; 16(6): e1905990, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31962006

RESUMEN

Compression of micropillars is followed in situ by a quick nanofocused X-ray scanning microscopy technique combined with 3D reciprocal space mapping. Compared to other attempts using X-ray nanobeams, it avoids any motion or vibration that would lead to a destruction of the sample. The technique consists of scanning both the energy of the incident nanofocused X-ray beam and the in-plane translations of the focusing optics along the X-ray beam. Here, the approach by imaging the strain and lattice orientation of Si micropillars and their pedestals during in situ compression is demonstrated. Varying the energy of the incident beam instead of rocking the sample and mapping the focusing optics instead of moving the sample supplies a vibration-free measurement of the reciprocal space maps without removal of the mechanical load. The maps of strain and lattice orientation are in good agreement with the ones recorded by ordinary rocking-curve scans. Variable-wavelength quick scanning X-ray microscopy opens the route for in situ strain and tilt mapping toward more diverse and complex materials environments, especially where sample manipulation is difficult.

5.
J Synchrotron Radiat ; 26(Pt 2): 571-584, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855270

RESUMEN

The ID01 beamline has been built to combine Bragg diffraction with imaging techniques to produce a strain and mosaicity microscope for materials in their native or operando state. A scanning probe with nano-focused beams, objective-lens-based full-field microscopy and coherent diffraction imaging provide a suite of tools which deliver micrometre to few nanometre spatial resolution combined with 10-5 strain and 10-3 tilt sensitivity. A detailed description of the beamline from source to sample is provided and serves as a reference for the user community. The anticipated impact of the impending upgrade to the ESRF - Extremely Brilliant Source is also discussed.

6.
Angew Chem Int Ed Engl ; 58(49): 17604-17609, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31560406

RESUMEN

Metal oxides are an important family of semiconductors for effective photoelectrodes in solar-to-chemical energy conversion. Defect engineering, such as modification of oxygen vacancy density, has been extensively applied in tailoring the optoelectric properties of photoelectrodes. Very limited attention has been paid to the influence of metal vacancies. Herein, we study metal vacancies in a typical CuO photocathode for photoelectrochemical (PEC) water splitting. The Cu vacancies can improve the charge carrier concentration, and facilitate the charge separation and transfer in the CuO photocathode. By changing the O2 partial pressure, the density of Cu vacancies can be tuned, which leads to improved PEC performance. The CuO photocathode prepared in pure O2 exhibits a 100 % photocurrent increase compared to that prepared in air. The promotion effect of Cu vacancies on the PEC is also observed in other Cu based photocathodes, showing the generic role of metal vacancies in efficient photocathodes.

7.
J Am Chem Soc ; 139(44): 15748-15759, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28994294

RESUMEN

Ternary metal chalcogenide nanocrystals (NCs) offer exciting opportunities as novel materials to be explored on the nanoscale showing optoelectronic properties tunable with size and composition. CuInS2 (CIS) NCs are the most widely studied representatives of this family as they can be easily prepared with good size control and in high yield by reacting the metal precursors (copper iodide and indium acetate) in dodecanethiol (DDT). Despite the widespread use of this synthesis method, both the reaction mechanism and the surface state of the obtained NCs remain elusive. Here, we perform in situ X-ray diffraction using synchrotron radiation to monitor the pre- and postnucleation stages of the formation of CIS NCs. SAXS measurements show that the reaction intermediate formed at 100 °C presents a periodic lamellar structure with a characteristic spacing of 34.9 Å. WAXS measurements performed after nucleation of the CIS NCs at 230 °C demonstrate that their growth kinetics depend on the degree of precursor conversion achieved in the initial stage at 100 °C. NC formation requires the cleavage of S-C bonds. We reveal by means of combined 1D and 2D proton and carbon NMR analyses that the generated dodecyl radicals lead to the formation of a new thioether species R-S-R. The latter is part of a ligand double layer, which consists of dynamically bound dodecanethiolate ligands as well as of head-to-tail bound R-S-R molecules. This ligand double layer and a high ligand density (3.6 DDT molecules per nm2) are at the origin of the apparent difficulty to functionalize the surface of CIS NCs obtained with the DDT method.

8.
Nano Lett ; 15(2): 981-9, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25631459

RESUMEN

We present the results of the study of the correlation between the electrical and structural properties of individual GaAs nanowires measured in their as-grown geometry. The resistance and the effective charge carrier mobility were extracted for several nanowires, and subsequently, the same nano-objects were investigated using X-ray nanodiffraction. This revealed a number of perfectly stacked zincblende and twinned zincblende units separated by axial interfaces. Our results suggest a correlation between the electrical parameters and the number of intrinsic interfaces.

9.
Angew Chem Int Ed Engl ; 55(26): 7496-500, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27145171

RESUMEN

Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates µm-resolved X-ray diffraction (µ-XRD) and X-ray excited optical fluorescence (µ-XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from µ-XEOF) were correlated with local crystallinity and framework Al content, determined by µ-XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X-ray induced fluorescence of organic molecules formed at the reactive centers.

10.
Adv Mater ; 36(30): e2403482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38722691

RESUMEN

High-voltage LiNi0.5Mn1.5O4 (LNMO) spinel oxides are highly promising cobalt-free cathode materials to cater to the surging demand for lithium-ion batteries (LIBs). However, commercial application of LNMOs is still challenging despite decades of research. To address the challenge, the understanding of their crystallography and structural evolutions during synthesis and electrochemical operation is critical. This review aims to illustrate and to update the fundamentals of crystallography, phase transition mechanisms, and electrochemical behaviors of LNMOs. First, the research history of LNMO and its development into a LIB cathode material is outlined. Then the structural basics of LNMOs including the classic and updated views of the crystal polymorphism, interconversion between the polymorphs, and structure-composition relationship is reviewed. Afterward, the phase transition mechanisms of LNMOs that connect structural and electrochemical properties are comprehensively discussed from fundamental thermodynamics to operando dynamics at intra- and inter-particle levels. In addition, phase evolutions during overlithiation as well as thermal-/electrochemical-driven phase transformations of LNMOs are also discussed. Finally, recommendations are offered for the further development of LNMOs as well as other complex materials to unlock their full potential for future sustainable and powerful batteries.

11.
ACS Nano ; 18(21): 13517-13527, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753950

RESUMEN

Solid-state reactions play a key role in materials science. The evolution of the structure of a single 350 nm Ni3Fe nanoparticle, i.e., its morphology (facets) as well as its deformation field, has been followed by applying multireflection Bragg coherent diffraction imaging. Through this approach, we unveiled a demixing process that occurs at high temperatures (600 °C) under an Ar atmosphere. This process leads to the gradual emergence of a highly strained core-shell structure, distinguished by two distinct lattice parameters with a difference of 0.4%. Concurrently, this transformation causes the facets to vanish, ultimately yielding a rounded core-shell nanoparticle. This final structure comprises a Ni3Fe core surrounded by a 40 nm Ni-rich outer shell due to preferential iron oxidation. Providing in situ 3D imaging of the lattice parameters at the nanometer scale while varying the temperature, this study─with the support of atomistic simulations─not only showcases the power of in situ multireflection BCDI but also provides valuable insights into the mechanisms at work during a solid-state reaction characterized by a core-shell transition.

12.
ACS Nano ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009584

RESUMEN

Understanding the strain dynamic behavior of catalysts is crucial for the development of cost-effective, efficient, stable, and long-lasting catalysts. Using time-resolved Bragg coherent diffraction imaging at the fourth generation Extremely Brilliant Source of the European Synchrotron (ESRF-EBS), we achieved subsecond time resolution during operando chemical reactions. Upon investigation of Pt nanoparticles during CO oxidation, the three-dimensional strain profile highlights significant changes in the surface and subsurface regions, where localized strain is probed along the [111] direction. Notably, a rapid increase in tensile strain was observed at the top and bottom Pt {111} facets during CO adsorption. Moreover, we detected oscillatory strain changes (6.4 s period) linked to CO adsorption during oxidation, where a time resolution of 0.25 s was achieved. This approach allows for the study of adsorption dynamics of catalytic nanomaterials at the single-particle level under operando conditions, which provides insight into nanoscale catalytic mechanisms.

13.
Small Methods ; : e2400598, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075823

RESUMEN

Lattice strain in crystals can be exploited to effectively tune their physical properties. In microscopic structures, experimental access to the full strain tensor with spatial resolution at the (sub-)micrometer scale is at the same time very interesting and challenging. In this work, how scanning X-ray diffraction microscopy, an emerging model-free method based on synchrotron radiation, can shed light on the complex, anisotropic deformation landscape within three dimensional (3D) microstructures is shown. This technique allows the reconstruction of all lattice parameters within any type of crystal with submicron spatial resolution and requires no sample preparation. Consequently, the local state of deformation can be fully quantified. Exploiting this capability, all components of the strain tensor in a suspended, strained Ge1 - xSnx /Ge microdisk are mapped. Subtle elastic deformations are unambiguously correlated with structural defects, 3D microstructure geometry, and chemical variations, as verified by comparison with complementary electron microscopy and finite element simulations. The methodology described here is applicable to a wide range of fields, from bioengineering to metallurgy and semiconductor research.

14.
Phys Rev Lett ; 110(20): 205503, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167426

RESUMEN

Large-wave-vector phonons have an important role in determining the thermal and electronic properties of nanoscale materials. The small volumes of such structures, however, have posed significant challenges to experimental studies of the phonon dispersion. We show that synchrotron x-ray thermal diffuse scattering can be adapted to probe phonons with wave vectors spanning the entire Brillouin zone of nanoscale silicon membranes. The thermal diffuse scattering signal from flat Si nanomembranes with thicknesses from 315 to 6 nm, and a sample volume as small as 5 µm(3), has the expected linear dependence on the membrane thickness and also exhibits excess intensity at large wave vectors, consistent with the scattering signature expected from low-lying large-wave-vector modes of the membranes.

15.
Nat Commun ; 14(1): 6975, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914690

RESUMEN

Lithiation dynamics and phase transition mechanisms in most battery cathode materials remain poorly understood, because of the challenge in differentiating inter- and intra-particle heterogeneity. In this work, the structural evolution inside Li1-xMn1.5Ni0.5O4 single crystals during electrochemical delithiation is directly resolved with operando X-ray nanodiffraction microscopy. Metastable domains of solid-solution intermediates do not appear associated with the reaction front between the lithiated and delithiated phases, as predicted by current phase transition theory. Instead, unusually persistent strain gradients inside the single crystals suggest that the shape and size of solid solution domains are instead templated by lattice defects, which guide the entire delithiation process. Morphology, strain distributions, and tilt boundaries reveal that the (Ni2+/Ni3+) and (Ni3+/Ni4+) phase transitions proceed through different mechanisms, offering solutions for reducing structural degradation in high voltage spinel active materials towards commercially useful durability. Dynamic lattice domain reorientation during cycling are found to be the cause for formation of permanent tilt boundaries with their angular deviation increasing during continuous cycling.

16.
ACS Appl Mater Interfaces ; 15(2): 3119-3130, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598897

RESUMEN

A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 µm, respectively. The short-ranged fluctuations have a typical bandwidth of 2 × 10-4 and can be quantitatively linked to the compressive stressing action of the metal electrodes defining the qubits. By finite element mechanical simulations, it is estimated that this strain fluctuation is increased up to 6 × 10-4 at cryogenic temperature. The longer-ranged fluctuations are of the 10-3 order and are associated with misfit dislocations in the plastically relaxed virtual substrate. From this, energy variations of the light and heavy-hole energy maxima of the order of several 100 µeV and 1 meV are calculated for electrodes and dislocations, respectively. These insights over material-related inhomogeneities may feed into further modeling for optimization and design of large-scale quantum processors manufactured using the mainstream Si-based microelectronics technology.

17.
J Appl Crystallogr ; 56(Pt 4): 1032-1037, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555222

RESUMEN

The CITIUS detector is a next-generation high-speed X-ray imaging detector. It has integrating-type pixels and is designed to show a consistent linear response at a frame rate of 17.4 kHz, which results in a saturation count rate of over 30 Mcps pixel-1 when operating at an acquisition duty cycle close to 100%, and up to 20 times higher with special extended acquisition modes. Here, its application for Bragg coherent diffraction imaging is demonstrated by taking advantage of the fourth-generation Extremely Brilliant Source of the European Synchrotron (ESRF-EBS, Grenoble, France). The CITIUS detector outperformed a photon-counting detector, similar spatial resolution being achieved (20 ±â€…6 nm versus 22 ±â€…9 nm) with greatly reduced acquisition times (23 s versus 200 s). It is also shown how the CITIUS detector can be expected to perform during dynamic Bragg coherent diffraction imaging measurements. Finally, the current limitations of the CITIUS detector and further optimizations for coherent imaging techniques are discussed.

18.
Materials (Basel) ; 15(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36143513

RESUMEN

The microstructure of a sub-micrometric gold crystal during nanoindentation is visualized by in situ multi-wavelength Bragg coherent X-ray diffraction imaging. The gold crystal is indented using a custom-built atomic force microscope. A band of deformation attributed to a shear band oriented along the (221) lattice plane is nucleated at the lower left corner of the crystal and propagates towards the crystal center with increasing applied mechanical load. After complete unloading, an almost strain-free and defect-free crystal is left behind, demonstrating a pseudo-elastic behavior that can only be studied by in situ imaging while it is invisible to ex situ examinations. The recovery is probably associated with reversible dislocations nucleation/annihilation at the side surface of the particle and at the particle-substrate interface, a behavior that has been predicted by atomistic simulations. The full recovery of the particle upon unloading sheds new light on extraordinary mechanical properties of metal nanoparticles obtained by solid-state dewetting.

19.
Nat Commun ; 13(1): 1565, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322022

RESUMEN

Transition metal dissolution in cathode active material for Li-based batteries is a critical aspect that limits the cycle life of these devices. Although several approaches have been proposed to tackle this issue, this detrimental process is not yet overcome. Here, benefitting from the knowledge developed in the semiconductor research field, we apply an epitaxial method to construct an atomic wetting layer of LaTMO3 (TM = Ni, Mn) on a LiNi0.5Mn1.5O4 cathode material. Experimental measurements and theoretical analyses confirm a Stranski-Krastanov growth, where the strained wetting layer forms under thermodynamic equilibrium, and it is self-limited to monoatomic thickness due to the competition between the surface energy and the elastic energy. Being atomically thin and crystallographically connected to the spinel host lattices, the LaTMO3 wetting layer offers long-term suppression of the transition metal dissolution from the cathode without impacting its dynamics. As a result, the epitaxially-engineered cathode material enables improved cycling stability (a capacity retention of about 77% after 1000 cycles at 290 mA g-1) when tested in combination with a graphitic carbon anode and a LiPF6-based non-aqueous electrolyte solution.

20.
Nat Commun ; 12(1): 5385, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508094

RESUMEN

At the nanoscale, elastic strain and crystal defects largely influence the properties and functionalities of materials. The ability to predict the structural evolution of catalytic nanocrystals during the reaction is of primary importance for catalyst design. However, to date, imaging and characterising the structure of defects inside a nanocrystal in three-dimensions and in situ during reaction has remained a challenge. We report here an unusual twin boundary migration process in a single platinum nanoparticle during CO oxidation using Bragg coherent diffraction imaging as the characterisation tool. Density functional theory calculations show that twin migration can be correlated with the relative change in the interfacial energies of the free surfaces exposed to CO. The x-ray technique also reveals particle reshaping during the reaction. In situ and non-invasive structural characterisation of defects during reaction opens new avenues for understanding defect behaviour in confined crystals and paves the way for strain and defect engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA