Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 26(10): 2765-2782, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28238204

RESUMEN

While secondary contact between Mytilus edulis and Mytilus trossulus in North America results in mosaic hybrid zone formation, both species form a hybrid swarm in the Baltic. Despite pervasive gene flow, Baltic Mytilus species maintain substantial genetic and phenotypic differentiation. Exploring mechanisms underlying the contrasting genetic composition in Baltic Mytilus species will allow insights into processes such as speciation or adaptation to extremely low salinity. Previous studies in the Baltic indicated that only weak interspecific reproductive barriers exist and discussed the putative role of adaptation to environmental conditions. Using a combination of hydrodynamic modelling and multilocus genotyping, we investigate how oceanographic conditions influence passive larval dispersal and hybrid swarm formation in the Baltic. By combining our analyses with previous knowledge, we show a genetic transition of Baltic Mytilus species along longitude 12°-13°E, that is a virtual line between Malmö (Sweden) and Stralsund (Germany). Although larval transport only occurs over short distances (10-30 km), limited larval dispersal could not explain the position of this genetic transition zone. Instead, the genetic transition zone is located at the area of maximum salinity change (15-10 psu). Thus, we argue that selection results in weak reproductive barriers and local adaptation. This scenario could maintain genetic and phenotypic differences between Baltic Mytilus species despite pervasive introgressive hybridization.


Asunto(s)
Distribución Animal , Genética de Población , Hidrodinámica , Mytilus/genética , Animales , Países Bálticos , Genotipo , Alemania , Larva , Suecia
2.
Mar Environ Res ; 143: 101-110, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30477876

RESUMEN

To estimate the contribution of a Mya arenaria population to total oxygen utilization (TOU) at different temperatures, the respiration rate of M. arenaria was measured for a full size range at 5 and 15 °C. In this study we measured respiration rates in a closed system while the clams were burrowed in sandy sediment, resembling their natural habitat. Rates were measured over a sufficient time span (24 h) to average varying activity phases during the measurements. We calculated a size-dependent respiration rate for M. arenaria and its variation with temperature. Temperature strongly affects the total population respiration and the contribution of different size classes to respiration of the total M. arenaria population. M. arenaria was estimated to contribute up to 70% to the total oxygen utilization of benthic communities analyzed in this study very much depending on the size distribution of the bivalve population present. Given a specific size distribution, smaller individuals had a stronger influence on the total oxygen utilization at colder temperature, while the influence of larger individuals grew with warmer temperature. Even though sizes contribute differently, a significant relation between abundance and respiration could be drawn in most cases analyzed. However, this relation should not be used as a general rule, but when estimating a population's metabolism the size distribution within that population has to be regarded.


Asunto(s)
Sedimentos Geológicos/química , Mya , Animales , Biología Marina , Mya/anatomía & histología , Mya/fisiología , Oxígeno , Consumo de Oxígeno , Respiración , Temperatura
3.
Sci Adv ; 3(4): e1602411, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28508039

RESUMEN

Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2-adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.


Asunto(s)
Aclimatación/fisiología , Cambio Climático , Mytilus edulis/fisiología , Animales , Dióxido de Carbono/metabolismo , Ecosistema , Concentración de Iones de Hidrógeno , Océanos y Mares
4.
Sci Rep ; 6: 31447, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27538361

RESUMEN

Carbon capture and storage is promoted as a mitigation method counteracting the increase of atmospheric CO2 levels. However, at this stage, environmental consequences of potential CO2 leakage from sub-seabed storage sites are still largely unknown. In a 3-month-long mesocosm experiment, this study assessed the impact of elevated pCO2 levels (1,500 to 24,400 µatm) on Cerastoderma edule dominated benthic communities from the Baltic Sea. Mortality of C. edule was significantly increased in the highest treatment (24,400 µatm) and exceeded 50%. Furthermore, mortality of small size classes (0-1 cm) was significantly increased in treatment levels ≥6,600 µatm. First signs of external shell dissolution became visible at ≥1,500 µatm, holes were observed at >6,600 µatm. C. edule body condition decreased significantly at all treatment levels (1,500-24,400 µatm). Dominant meiofauna taxa remained unaffected in abundance. Densities of calcifying meiofauna taxa (i.e. Gastropoda and Ostracoda) decreased in high CO2 treatments (>6,600 µatm), while the non - calcifying Gastrotricha significantly increased in abundance at 24,400 µatm. In addition, microbial community composition was altered at the highest pCO2 level. We conclude that strong CO2 leakage can alter benthic infauna community composition at multiple trophic levels, likely due to high mortality of the dominant macrofauna species C. edule.


Asunto(s)
Bivalvos/fisiología , Dióxido de Carbono/química , Agua de Mar/química , Exoesqueleto/química , Animales , Conducta Animal , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA