Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Dis ; 106(2): 432-438, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34455807

RESUMEN

Management of Monilinia laxa, the causal agent of brown rot blossom blight in almond (Prunus dulcis), relies heavily on the use of chemical fungicides during bloom. However, chemical fungicides can have nontarget effects on beneficial arthropods, including pollinators, and select for resistance in the pathogen of concern. Almond yield is heavily reliant on successful pollination by healthy honey bees (Apis mellifera); thus, identifying sustainable, effective, and pollinator-friendly control methods for blossom blight during bloom is desirable. Flower-inhabiting microbes could provide a natural, sustainable form of biocontrol for M. laxa, while potentially minimizing costly nontarget effects on almond pollinators and the services they provide. As pollinators are sensitive to floral microbes and their associated taste and scent cues, assessing effects of prospective biocontrol species on pollinator attraction is also necessary. Here, our objective was to isolate and identify potential biocontrol microbes from an array of agricultural and natural flowering hosts and test their efficacy in suppressing M. laxa growth in culture. Out of an initial 287 bacterial and fungal isolates identified, 56 were screened using a dual culture plate assay. Most strains reduced M. laxa growth in vitro. Ten particularly effective candidate microbes were further screened for their effect on honey bee feeding. Of the 10, nine were found to both strongly suppress M. laxa growth in culture and not reduce honey bee feeding. These promising results suggest a number of strong candidates for augmentative microbial biocontrol of brown rot blossom blight in almond with potentially minimal effects on honey bee pollination.


Asunto(s)
Antibiosis , Ascomicetos , Abejas , Flores/microbiología , Prunus dulcis , Animales , Polinización , Estudios Prospectivos , Prunus dulcis/microbiología
2.
Appl Environ Microbiol ; 87(15): e0004821, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34020936

RESUMEN

Crop-associated microbiota are a key factor affecting host health and productivity. Most crops are grown within heterogeneous landscapes, and interactions between management practices and landscape context often affect plant and animal biodiversity in agroecosystems. However, whether these same factors typically affect crop-associated microbiota is less clear. Here, we assessed whether orchard management strategies and landscape context affected bacterial and fungal communities in pear (Pyrus communis) flowers. We found that bacteria and fungi responded differently to management schemes. Organically certified orchards had higher fungal diversity in flowers than conventional or bio-based integrated pest management (IPM) orchards, but organic orchards had the lowest bacterial diversity. Orchard management scheme also best predicted the distribution of several important bacterial and fungal genera that either cause or suppress disease; organic and bio-based IPM best explained the distributions of bacterial and fungal genera, respectively. Moreover, patterns of bacterial and fungal diversity were affected by interactions between management, landscape context, and climate. When examining the similarity of bacterial and fungal communities across sites, both abundance- and taxon-related turnovers were mediated primarily by orchard management scheme and landscape context and, specifically, the amount of land in cultivation. Our study reveals local- and landscape-level drivers of floral microbiome structure in a major fruit crop, providing insights that can inform microbiome management to promote host health and high-yielding quality fruit. IMPORTANCE Proper crop management during bloom is essential for producing disease-free tree fruit. Tree fruits are often grown in heterogeneous landscapes; however, few studies have assessed whether landscape context and crop management affect the floral microbiome, which plays a critical role in shaping plant health and disease tolerance. Such work is key for identification of tactics and/or contexts where beneficial microbes proliferate and pathogenic microbes are limited. Here, we characterize the floral microbiome of pear crops in Washington State, where major production occurs in intermountain valleys and basins with variable elevation and microclimates. Our results show that both local-level (crop management) and landscape-level (habitat types and climate) factors affect floral microbiota but in disparate ways for each kingdom. More broadly, these findings can potentially inform microbiome management in orchards for promotion of host health and high-quality yields.


Asunto(s)
Agricultura/métodos , Flores/microbiología , Microbiota , Pyrus/microbiología , Bacterias/clasificación , Bacterias/genética , Productos Agrícolas/microbiología , ADN Bacteriano , ADN de Hongos , Hongos/clasificación , Hongos/genética , Washingtón
3.
Ecol Lett ; 23(7): 1137-1152, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32394591

RESUMEN

Indirect defence, the adaptive top-down control of herbivores by plant traits that enhance predation, is a central component of plant-herbivore interactions. However, the scope of interactions that comprise indirect defence and associated ecological and evolutionary processes has not been clearly defined. We argue that the range of plant traits that mediate indirect defence is much greater than previously thought, and we further organise major concepts surrounding their ecological functioning. Despite the wide range of plant traits and interacting organisms involved, indirect defences show commonalities when grouped. These categories are based on whether indirect defences boost natural enemy abundance via food or shelter resources, or, alternatively, increase natural enemy foraging efficiency via information or alteration of habitat complexity. The benefits of indirect defences to natural enemies should be further explored to establish the conditions in which indirect defence generates a plant-natural enemy mutualism. By considering the broader scope of plant-herbivore-natural enemy interactions that comprise indirect defence, we can better understand plant-based food webs, as well as the evolutionary processes that have shaped them.


Asunto(s)
Insectos , Plantas , Animales , Ecosistema , Cadena Alimentaria , Herbivoria
4.
J Chem Ecol ; 46(8): 659-667, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32246258

RESUMEN

Microbial metabolism can shape cues important for animal attraction in service-resource mutualisms. Resources are frequently colonized by microbial communities, but experimental assessment of animal-microbial interactions often focus on microbial monocultures. Such an approach likely fails to predict effects of microbial assemblages, as microbe-microbe interactions may affect in a non-additive manner microbial metabolism and resulting chemosensory cues. Here, we compared effects of microbial mono- and cocultures on growth of constituent microbes, volatile metabolite production, sugar catabolism, and effects on pollinator foraging across two nectar environments that differed in sugar concentration. Growth in co-culture decreased the abundance of the yeast Metschnikowia reukaufii, but not the bacterium Asaia astilbes. Volatile emissions differed significantly between microbial treatments and with nectar concentration, while sugar concentration was relatively similar among mono- and cocultures. Coculture volatile emission closely resembled an additive combination of monoculture volatiles. Despite differences in microbial growth and chemosensory cues, honey bee feeding did not differ between microbial monocultures and assemblages. Taken together, our results suggest that in some cases, chemical and ecological effects of microbial assemblages are largely predictable from those of component species, but caution that more work is necessary to predict under what circumstances non-additive effects are important.


Asunto(s)
Acetobacteraceae/metabolismo , Abejas/fisiología , Metschnikowia/metabolismo , Néctar de las Plantas/química , Polinización , Compuestos Orgánicos Volátiles/metabolismo , Animales , Técnicas de Cocultivo , Flores
5.
Biol Lett ; 15(7): 20190132, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31311487

RESUMEN

Animals such as bumblebees use chemosensory cues to both locate and evaluate essential resources. Increasingly, it is recognized that microbes can alter the quality of foraged resources and produce metabolites that may act as foraging cues. The distinct nature of these chemosensory cues however and their use in animal foraging remain poorly understood. Here, we test the hypothesis that species of nectar-inhabiting microbes differentially influence pollinator attraction and feeding via microbial metabolites produced in nectar. We first examined the electrophysiological potential for bumblebee (Bombus impatiens) antennal olfactory neurons to respond to microbial volatile organic compounds (mVOCs), followed by an olfactory preference test. We also assessed gustatory preferences for microbial-altered nectar through both no-choice and choice feeding assays. Antennal olfactory neurons responded to some mVOCs, and bees preferred nectar solutions inoculated with the bacterium Asaia astilbes over the yeast Metschnikowia reukaufii based on volatiles alone. However, B. impatiens foragers consumed significantly more Metschnikowia-inoculated nectar, suggesting distinct roles for mVOCs and non-volatile metabolites in mediating both attraction and feeding decisions. Collectively, our results suggest that microbial metabolites have significant potential to shape interspecific, plant-pollinator signalling, with consequences for forager learning, economics and floral host reproduction.


Asunto(s)
Metschnikowia , Polinización , Animales , Abejas , Flores , Néctar de las Plantas , Plantas , Olfato
6.
Ecology ; 99(5): 1018-1023, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29608784

RESUMEN

A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species' abundance on other species in the community. Accounting for dependence among co-occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions.


Asunto(s)
Hemípteros , Tsuga , Animales , Insectos
7.
Ecology ; 99(8): 1783-1791, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29729193

RESUMEN

Forests make up a large portion of terrestrial plant biomass, and the long-lived woody plants that dominate them possess an array of traits that deter consumption by forest pests. Although often extremely effective against native consumers, invasive species that avoid or overcome these defenses can wreak havoc on trees and surrounding ecosystems. This is especially true when multiple invasive species co-occur, since interactions between invasive herbivores may yield non-additive effects on the host. While the threat posed by invasive forest pests is well known, long-term field experiments are necessary to explore these consumer-host interactions at appropriate spatial and temporal scales. Moreover, it is important to measure multiple variables to get a "whole-plant" picture of their combined impact. We report the results of a 4-yr field experiment addressing the individual and combined impacts of two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia externa), on native eastern hemlock (Tsuga canadensis) in southern New England. In 2011, we planted 200 hemlock saplings into a temperate forest understory and experimentally manipulated the presence/absence of both herbivore species; in 2015, we harvested the 88 remaining saplings and assessed plant physiology, growth, and resource allocation. Adelgids strongly affected hemlock growth: infested saplings had lower above/belowground biomass ratios, more needle loss, and produced fewer new needles than control saplings. Hemlock scale did not alter plant biomass allocation or growth, and its co-occurrence did not alter the impact of adelgid. While both adelgid and scale impacted the concentrations of primary metabolites, adelgid effects were more pronounced. Adelgid feeding simultaneously increased free amino acids local to feeding sites and a ~30% reduction in starch. The cumulative impact of adelgid-induced needle loss, manipulation of nitrogen pools, and the loss of stored resources likely accelerates host decline through disruption of homeostatic source-sink dynamics occurring at the whole-plant level. Our research stresses the importance of considering long-term impacts to predict how plants will cope with contemporary pressures experienced in disturbed forests.


Asunto(s)
Hemípteros , Herbivoria , Animales , Ecosistema , Bosques , New England , Árboles , Tsuga
8.
Oecologia ; 186(4): 973-982, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29362885

RESUMEN

Herbivore-induced changes in host quality mediate indirect interactions between herbivores. The nature of these indirect interactions can vary depending on the identity of herbivores involved, species-specific induction of defense-signaling pathways, and sequence of attack. However, our understanding of the role of these signaling pathways in the success of multiple exotic herbivores is less known. Eastern hemlock (Tsuga canadensis) is attacked by two invasive herbivores [elongate hemlock scale (EHS; Fiorinia externa) and hemlock woolly adelgid (HWA; Adelges tsugae)] throughout much of its range, but prior attack by EHS is known to deter HWA. The potential role of phytohormones in this interaction is poorly understood. We measured endogenous levels of phytohormones in eastern hemlock in response to attack by these invasive herbivores. We also used exogenous application of methyl jasmonate (MJ) and acibenzolar-S-methyl (ASM), a salicylic acid (SA) pathway elicitor, to test the hypothesis that defense-signaling phytohormones typically induced by herbivores could deter HWA. Resistance to adelgid attack was assessed using a behavioral assay. Adelgid feeding significantly elevated both abscisic acid (ABA) and SA in local tissues, while EHS feeding had no detectable effect on either phytohormone. HWA progrediens and sistens crawlers preferred to settle on ASM-treated foliage. In contrast, HWA crawlers actively avoided settlement on MJ-treated foliage. We suggest that induction of ABA- and SA-signaling pathways, in concert with defense-signaling interference, may aid HWA invasion success, and that defense-signaling interference, induced by exotic competitors, may mediate resistance of native hosts.


Asunto(s)
Hemípteros , Herbivoria , Animales , Reguladores del Crecimiento de las Plantas , Especificidad de la Especie , Tsuga
9.
Ecology ; 95(7): 1792-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25163113

RESUMEN

Floral nectar of many plant species is prone to colonization by microbial organisms such as yeasts. Their presence and metabolism of nectar chemical components have the potential to modify a suite of floral traits important for pollinator attraction, including nectar quality and scent. However, studies on the direct and indirect effects of nectar-inhabiting microorganisms on pollinator behavior and plant reproductive success remain rare. To determine their potential to affect pollinator behavior and plant fitness, we experimentally manipulated the common nectar-inhabiting yeast Metschnikowia reukaufii in the nectar of Delphinium nuttallianum, a short-lived montane perennial herb. We detected positive, indirect, pollinator-mediated effects of yeasts on male plant fitness measured as pollen donation using powdered fluorescent dyes. However, we detected no direct or indirect effects on components of female fitness. Matching effects on male plant fitness, pollinators responded positively to the presence of yeasts, removing more nectar from flowers treated with M. reukaufii. Our results provide evidence of effects of nectar-inhabiting yeasts on male plant fitness and highlight the importance of microorganisms in mediating plant-pollinator interactions and subsequent plant fitness.


Asunto(s)
Delphinium/genética , Delphinium/fisiología , Aptitud Genética , Levaduras/fisiología
10.
Ecol Lett ; 16(3): 399-408, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23237105

RESUMEN

The majority of angiosperms are hermaphroditic with total fitness comprised of both male and female components of reproduction. However, most studies examining the effects of abiotic factors and species interactions on fitness have focussed on female reproduction, potentially biasing our understanding of the consequences of environmental factors on total fitness. Here, we use meta-analysis to test how environmental factors affect male function. We obtained 278 effect sizes from 96 studies that measured male function responses to manipulated environmental factors. We found significant effects of abiotic factors and species interactions on estimates of male function, with responses varying depending on environmental factor identity. Male and female responses were correlated for abiotic factor manipulations, but varied based on the type of species interaction (antagonistic or mutualistic). This suggests that measuring only female function may misrepresent whole-plant reproduction depending on context. Finally, we found differences amongst components of male function in response to environmental factors, suggesting that some male function estimates may fail to capture the effects of environmental factors on male fitness. Our results demonstrate the importance of incorporating male function into ecological and evolutionary studies to provide a more accurate understanding of the effects of environmental factors on total fitness.


Asunto(s)
Ecosistema , Magnoliopsida/fisiología , Polen/fisiología
11.
Mol Ecol ; 22(13): 3552-66, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23506537

RESUMEN

Selection on quantitative trait loci (QTL) may vary among natural environments due to differences in the genetic architecture of traits, environment-specific allelic effects or changes in the direction and magnitude of selection on specific traits. To dissect the environmental differences in selection on life history QTL across climatic regions, we grew a panel of interconnected recombinant inbred lines (RILs) of Arabidopsis thaliana in four field sites across its native European range. For each environment, we mapped QTL for growth, reproductive timing and development. Several QTL were pleiotropic across environments, three colocalizing with known functional polymorphisms in flowering time genes (CRY2, FRI and MAF2-5), but major QTL differed across field sites, showing conditional neutrality. We used structural equation models to trace selection paths from QTL to lifetime fitness in each environment. Only three QTL directly affected fruit number, measuring fitness. Most QTL had an indirect effect on fitness through their effect on bolting time or leaf length. Influence of life history traits on fitness differed dramatically across sites, resulting in different patterns of selection on reproductive timing and underlying QTL. In two oceanic field sites with high prereproductive mortality, QTL alleles contributing to early reproduction resulted in greater fruit production, conferring selective advantage, whereas alleles contributing to later reproduction resulted in larger size and higher fitness in a continental site. This demonstrates how environmental variation leads to change in both QTL effect sizes and direction of selection on traits, justifying the persistence of allelic polymorphism at life history QTL across the species range.


Asunto(s)
Arabidopsis/genética , Interacción Gen-Ambiente , Sitios de Carácter Cuantitativo , Selección Genética , Alelos , Arabidopsis/clasificación , Arabidopsis/crecimiento & desarrollo , Ambiente , Epistasis Genética , Flores/genética , Flores/crecimiento & desarrollo , Ligamiento Genético , Fenotipo , Polimorfismo Genético , Reproducción
12.
J Econ Entomol ; 116(6): 2052-2061, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37816664

RESUMEN

Understanding orchard floor management is critical to organic tree-fruit production systems given its impact on weeds, soil fertility, tree health, and crop yield. Several viable options are available to producers for weed management and promotion of organic fertility, including use of turf and broadleaf alleyway covers and living and nonliving tree-row mulches. While these measures can be effective, little is known about how these strategies influence arthropod pests, which cause fruit injury. Here, we assessed 6 organic orchard floor management strategies for their impact on arthropod abundance and diversity in an organic peach production system in northern Utah from 2010 to 2014, using sweep netting and pitfall collections along with observed peach fruit damage. Generally, we found that alleyway and tree-row treatments had no impact on total arthropod diversity, species richness, or community diversity. However, earwig (Forficula auricularia) abundance was significantly impacted by alleyway and tree-row treatments that resulted in increased fruit injury. Trefoil alleyway treatments consistently increased earwig abundance across life-history stages, while mulch or Alyssum (straw) tree-row treatments harbored more earwigs and, as a result, increased earwig fruit injury. Since earwigs are especially prone to damaging young, developing fruits, it is imperative that more work is done to assess earwig abundances and life-history traits. Our results demonstrate that detrimental arthropods are sensitive to orchard floor management and can further inform integrated pest management approaches that complement sustainability goals.


Asunto(s)
Artrópodos , Prunus persica , Animales , Frutas , Control de Plagas , Suelo
13.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210155, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35491594

RESUMEN

Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant-microbe-pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Asunto(s)
Bacterias , Néctar de las Plantas , Animales , Bacterias/metabolismo , Néctar de las Plantas/metabolismo , Plantas , Olfato
14.
J Agric Food Chem ; 70(32): 9819-9825, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35917340

RESUMEN

Disease management is critical to ensuring healthy crop yields and is often targeted at flowers because of their susceptibility to pathogens and direct link to reproduction. Many disease management strategies are unsustainable however because of the potential for pathogens to evolve resistance, or nontarget effects on beneficial insects. Manipulating the floral microbiome holds some promise as a sustainable alternative to chemical means of disease control. In this perspective, we discuss the current state of research concerning floral microbiome assembly and management in agroecosystems as well as future directions aimed at improving the sustainability of disease control and insect-mediated ecosystem services.


Asunto(s)
Ecosistema , Microbiota , Animales , Flores , Insectos
15.
Ecology ; 103(3): e3606, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34897664

RESUMEN

The abundance and diversity of pollinator populations are in global decline. Managed pollinator species, like honey bees, and wild species are key ecosystem service providers in both natural and managed agroecosystems. However, relatively few studies have exhaustively characterized pollinator populations in diverse agroecosystems over multiple years, while also thoroughly documenting plant-pollinator interactions. Yet, such studies are needed to fulfill the national pollinator protection plans that have been released by the United States and other nations. Our research is among the first studies to respond to these directives by systematically documenting bee and plant biodiversity, bee-plant interactions, and bee-mediated pollen movement in farming systems of the Pacific Northwest, USA. Our data provides insight into the processes mediating pollinator and plant community assembly, persistence, and resilience across landscapes with variable crop and landscape diversity and agroecosystem management practices. These data will also contribute to the development of a United States pollinator database, supporting the United States' plan to promote pollinators. With few publicly available data sets that systematically take account of agroecosystem practices, plant populations, and pollinators, our research will provide future users the means to conduct synesthetic studies of pollinators and ecosystem function in a period of rapid and global pollinator declines. There are no copyright or proprietary restrictions for research or teaching purposes. Usage of the data set must be cited.


Asunto(s)
Ecosistema , Polinización , Agricultura , Animales , Abejas , Biodiversidad , Flores , Noroeste de Estados Unidos
17.
Front Plant Sci ; 9: 1239, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233608

RESUMEN

Herbivore suppression is mediated by both plant defenses and predators. In turn, plant defenses are impacted by soil fertility and interactions with soil bacteria. Measuring the relative importance of nutritional and microbial drivers of herbivore resistance has proven problematic, in part because it is difficult to manipulate soil-bacterial community composition. Here, we exploit variation in soil fertility and microbial biodiversity across 20 farms to untangle suppression of aphids (Brevicoryne brassicae) through bottom-up and top-down channels. We planted Brassica oleracea plants in soil from each farm, manipulated single and dual infestations of aphids alone or with caterpillars (Pieris rapae), and exposed aphids to parasitoid wasps (Diaeretiella rapae) in the open field. We then used multi-model inference to identify the strongest soil-based predictors of herbivore growth and parasitism. We found that densities of Bacillus spp., a genus known to include plant-growth-promoting rhizobacteria, negatively correlated with aphid suppression by specialist parasitoids. Aphid parasitism also was disrupted on plants that had caterpillar damage, compared to plants attacked only by aphids. Relative abundance of Pseudomonas spp. bacteria correlated with higher aphid growth, although this appeared to be a direct effect, as aphid parasitism was not associated with this group of bacteria. Non-pathogenic soil bacteria are often shown to deliver benefits to plants, improving plant nutrition and the deployment of anti-herbivore defenses. However, our results suggest that these plant growth-promoting bacteria may also indirectly weaken top-down aphid suppression by parasitoids and directly improve aphid performance. Against a background of varying soil fertility, microbial biodiversity, competing herbivores, and natural enemies, we found that effects of non-pathogenic soil microbes on aphid growth outweighed those of nutritional factors. Therefore, predictions about the strength of plant defenses along resource gradients must be expanded to include microbial associates.

18.
Environ Microbiol Rep ; 9(2): 79-84, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27888579

RESUMEN

Nectar mediates interactions between plants and pollinators in natural and agricultural systems. Specialized microorganisms are common nectar inhabitants, and potentially important mediators of plant-pollinator interactions. However, their diversity and role in mediating pollination services in agricultural systems are poorly characterized. Moreover, agrochemicals are commonly applied to minimize crop damage, but may present ecological consequences for non-target organisms. Assessment of ecological risk has tended to focus on beneficial macroorganisms such as pollinators, with less attention paid to microorganisms. Here, using culture-independent methods, we assess the impact of two widely-used fungicides on nectar microbial community structure in the mass-flowering crop almond (Prunus dulcis). We predicted that fungicide application would reduce fungal richness and diversity, whereas competing bacterial richness would increase, benefitting from negative effects on fungi. We found that fungicides reduced fungal richness and diversity in exposed flowers, but did not significantly affect bacterial richness, diversity, or community composition. The relative abundance of Metschnikowia OTUs, nectar specialists that can impact pollination, was reduced by both fungicides. Given growing recognition of the importance of nectar microorganisms as mediators of plant-pollinator mutualisms, future research should consider the impact of management practices on plant-associated microorganisms and consequences for pollination services in agricultural landscapes.


Asunto(s)
Biota/efectos de los fármacos , Flores/microbiología , Hongos/clasificación , Hongos/efectos de los fármacos , Fungicidas Industriales/metabolismo , Néctar de las Plantas , Prunus dulcis/microbiología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Hongos/genética , Metagenómica , Metschnikowia
19.
AoB Plants ; 9(2): plx007, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28439394

RESUMEN

Invasive herbivores can dramatically impact the nitrogen (N) economy of native hosts. In deciduous species, most N is stored in stem tissues, while in evergreen conifer species N is stored in needles, making them potentially more vulnerable to herbivory. In eastern forests of the USA, the long-lived, foundational conifer eastern hemlock (Tsuga canadensis) is under the threat of extirpation by the invasive hemlock woolly adelgid (HWA: Adelges tsugae). We assessed the impact of HWA infestation on the patterns of seasonal foliar N availability in hemlock planted in a deciduous forest understory. Over the course of a year, we sampled needles and twigs and measured N, carbon (C), C:N ratio, and total protein concentrations. Tissue sampling events were timed to coincide with key life-history transitions for HWA to determine the association between HWA development and feeding with these foliar nutrients. In uninfested trees, needle and twig N concentrations fluctuated across seasons, indicating the potential importance of N storage and remobilization for the N economy of eastern hemlock. Although N levels in HWA-infested trees also cycled annually, the degree to which N concentrations fluctuated seasonally in tissues was significantly affected by HWA feeding. These fluctuations exceeded N levels observed in control trees and coincided with HWA feeding. HWA feeding generally increased N concentrations but did not affect protein levels, suggesting that changes in N do not occur via adelgid-induced protein breakdown. Herbivore-induced mobilization of N to feeding sites and its rapid depletion may be a significant contributor to eastern hemlock mortality in US forests.

20.
PLoS One ; 9(10): e108214, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25272164

RESUMEN

Microorganisms frequently colonize the nectar of angiosperm species. Though capable of altering a suite of traits important for pollinator attraction, few studies exist that test the degree to which they mediate pollinator foraging behavior. The objective of our study was to fill this gap by assessing the abundance and diversity of yeasts associated with the perennial larkspur Delphinium barbeyi (Ranunculaceae) and testing whether their presence affected components of pollinator foraging behavior. Yeasts frequently colonized D. barbeyi nectar, populating 54-77% of flowers examined depending on site. Though common, the yeast community was species-poor, represented by a single species, Metschnikowia reukaufii. Female-phase flowers of D. barbeyi were more likely to have higher densities of yeasts in comparison to male-phase flowers. Pollinators were likely vectors of yeasts, as virgin (unvisited) flowers rarely contained yeasts compared to flowers open to pollinator visitation, which were frequently colonized. Finally, pollinators responded positively to the presence of yeasts. Bombus foragers both visited and probed more flowers inoculated with yeasts in comparison to uninoculated controls. Taken together, our results suggest that variation in the occurrence and density of nectar-inhabiting yeasts have the potential to alter components of pollinator foraging behavior linked to pollen transfer and plant fitness.


Asunto(s)
Conducta Animal , Néctar de las Plantas , Polinización , Ranunculaceae/microbiología , Levaduras , Animales , Recuento de Colonia Microbiana , Levaduras/clasificación , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA