Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 9(16): eadf8966, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37075117

RESUMEN

Lysosomes degrade macromolecules and recycle their nutrient content to support cell function and survival. However, the machineries involved in lysosomal recycling of many nutrients remain to be discovered, with a notable example being choline, an essential metabolite liberated via lipid degradation. Here, we engineered metabolic dependency on lysosome-derived choline in pancreatic cancer cells to perform an endolysosome-focused CRISPR-Cas9 screen for genes mediating lysosomal choline recycling. We identified the orphan lysosomal transmembrane protein SPNS1 as critical for cell survival under choline limitation. SPNS1 loss leads to intralysosomal accumulation of lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Mechanistically, we reveal that SPNS1 is a proton gradient-dependent transporter of LPC species from the lysosome for their re-esterification into phosphatidylcholine in the cytosol. Last, we establish that LPC efflux by SPNS1 is required for cell survival under choline limitation. Collectively, our work defines a lysosomal phospholipid salvage pathway that is essential under nutrient limitation and, more broadly, provides a robust platform to deorphan lysosomal gene function.


Asunto(s)
Colina , Fosfolípidos , Colina/metabolismo , Supervivencia Celular , Fosfolípidos/metabolismo , Fosfatidilcolinas/metabolismo , Lisosomas/metabolismo
2.
Nat Commun ; 11(1): 4231, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32820153

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Commun ; 11(1): 3327, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620863

RESUMEN

Gaucher disease is a lysosomal storage disorder caused by insufficient glucocerebrosidase activity. Its hallmark manifestations are attributed to infiltration and inflammation by macrophages. Current therapies for Gaucher disease include life-long intravenous administration of recombinant glucocerebrosidase and orally-available glucosylceramide synthase inhibitors. An alternative approach is to engineer the patient's own hematopoietic system to restore glucocerebrosidase expression, thereby replacing the affected cells, and constituting a potential one-time therapy for this disease. Here, we report an efficient CRISPR/Cas9-based approach that targets glucocerebrosidase expression cassettes with a monocyte/macrophage-specific element to the CCR5 safe-harbor locus in human hematopoietic stem and progenitor cells. The targeted cells generate glucocerebrosidase-expressing macrophages and maintain long-term repopulation and multi-lineage differentiation potential with serial transplantation. The combination of a safe-harbor and a lineage-specific promoter establishes a universal correction strategy and circumvents potential toxicity of ectopic glucocerebrosidase in the stem cells. Furthermore, it constitutes an adaptable platform for other lysosomal enzyme deficiencies.


Asunto(s)
Edición Génica/métodos , Glucosilceramidasa/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/enzimología , Macrófagos/enzimología , Monocitos/enzimología , Animales , Diferenciación Celular/genética , Células Cultivadas , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Glucosilceramidasa/genética , Células HEK293 , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Macrófagos/metabolismo , Ingeniería Metabólica , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Monocitos/metabolismo , Trasplante Autólogo
4.
Nat Commun ; 10(1): 4045, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492863

RESUMEN

Lysosomal enzyme deficiencies comprise a large group of genetic disorders that generally lack effective treatments. A potential treatment approach is to engineer the patient's own hematopoietic system to express high levels of the deficient enzyme, thereby correcting the biochemical defect and halting disease progression. Here, we present an efficient ex vivo genome editing approach using CRISPR-Cas9 that targets the lysosomal enzyme iduronidase to the CCR5 safe harbor locus in human CD34+ hematopoietic stem and progenitor cells. The modified cells secrete supra-endogenous enzyme levels, maintain long-term repopulation and multi-lineage differentiation potential, and can improve biochemical and phenotypic abnormalities in an immunocompromised mouse model of Mucopolysaccharidosis type I. These studies provide support for the development of genome-edited CD34+ hematopoietic stem and progenitor cells as a potential treatment for Mucopolysaccharidosis type I. The safe harbor approach constitutes a flexible platform for the expression of lysosomal enzymes making it applicable to other lysosomal storage disorders.


Asunto(s)
Edición Génica/métodos , Genoma Humano , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Iduronidasa/metabolismo , Mucopolisacaridosis I/terapia , Animales , Antígenos CD34/genética , Antígenos CD34/metabolismo , Sistemas CRISPR-Cas , Terapia Genética/métodos , Humanos , Iduronidasa/genética , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología , Células 3T3 NIH , Fenotipo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Trasplante Heterólogo
5.
iScience ; 15: 524-535, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31132746

RESUMEN

Human neural stem cells (NSCs) offer therapeutic potential for neurodegenerative diseases, such as inherited monogenic nervous system disorders, and neural injuries. Gene editing in NSCs (GE-NSCs) could enhance their therapeutic potential. We show that NSCs are amenable to gene targeting at multiple loci using Cas9 mRNA with synthetic chemically modified guide RNAs along with DNA donor templates. Transplantation of GE-NSC into oligodendrocyte mutant shiverer-immunodeficient mice showed that GE-NSCs migrate and differentiate into astrocytes, neurons, and myelin-producing oligodendrocytes, highlighting the fact that GE-NSCs retain their NSC characteristics of self-renewal and site-specific global migration and differentiation. To show the therapeutic potential of GE-NSCs, we generated GALC lysosomal enzyme overexpressing GE-NSCs that are able to cross-correct GALC enzyme activity through the mannose-6-phosphate receptor pathway. These GE-NSCs have the potential to be an investigational cell and gene therapy for a range of neurodegenerative disorders and injuries of the central nervous system, including lysosomal storage disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA