Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Diabetologia ; 61(1): 168-181, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28852792

RESUMEN

AIMS/HYPOTHESIS: Identification of a pancreatic neuro-insular network in mice suggests that a similar integration of islets and nerves may be present in the human pancreas. To characterise the neuro-insular network and the intra-pancreatic ganglia in a clinically related setting, we examined human pancreases in health and with fatty infiltration via 3-dimensional (3D) histology and compared the human pancreatic microenvironment with its counterpart in mice. METHODS: Human pancreatic specimens from individuals with normal BMI, high BMI (≥ 25) and type 2 diabetes were used to investigate the neuro-insular network. Transparent specimens were prepared by tissue clearing for transmitted light and deep-tissue fluorescence imaging to simultaneously visualise infiltrated adipocytes, islets and neurovascular networks. RESULTS: High-definition images of human islets reveal that both the sympathetic and parasympathetic nerves enter the islet core and reside in the immediate microenvironment of islet cells. Around the islets, the neuro-insular network is visualised with 3D histology to identify the intra-pancreatic ganglia (peri-lobular and intra-parenchymal ganglia) and the islet-ganglionic association. In humans, but not in mice, pancreatic fatty infiltration (BMI dependent) features adipocytes infiltrating into the parenchyma and accumulating in the peri-lobular space, in which the peri-lobular ganglia also reside. We identified the formation of adipose-ganglionic complexes in the peri-lobular space and enlargement of ganglia around adipocytes. In the specimen from the individual with type 2 diabetes, an increase in the number of nerve projections from the intra-parenchymal ganglia is associated with severe fatty infiltration. CONCLUSIONS/INTERPRETATION: We present new perspectives of human pancreas and islet innervation via 3D histology. Our results strongly suggest that fatty infiltration in the human pancreas creates a neurotrophic microenvironment and promotes remodelling of pancreatic innervation.


Asunto(s)
Páncreas/metabolismo , Adipocitos/metabolismo , Animales , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Islotes Pancreáticos/metabolismo , Ratones , Obesidad/metabolismo , Sistema Nervioso Simpático/metabolismo
2.
Proc Natl Acad Sci U S A ; 112(9): 2888-93, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25695968

RESUMEN

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic ß cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total ß-cell mass, and the role of Gi-GPCRs in establishing ß-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates ß-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic ß cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal ß cells decreased ß-cell proliferation, reduced adult ß-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal ß-cell proliferation, increased adult ß-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult ß cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of ß-cell replication. These studies link Gi-GPCR signaling to ß-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase ß-cell mass in patients with diabetes.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Glucosa/genética , Glucosa/metabolismo , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Receptores Adrenérgicos alfa 2/genética
3.
Nature ; 463(7282): 775-80, 2010 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-20148032

RESUMEN

Insulin from the beta-cells of the pancreatic islets of Langerhans controls energy homeostasis in vertebrates, and its deficiency causes diabetes mellitus. During embryonic development, the transcription factor neurogenin 3 (Neurog3) initiates the differentiation of the beta-cells and other islet cell types from pancreatic endoderm, but the genetic program that subsequently completes this differentiation remains incompletely understood. Here we show that the transcription factor Rfx6 directs islet cell differentiation downstream of Neurog3. Mice lacking Rfx6 failed to generate any of the normal islet cell types except for pancreatic-polypeptide-producing cells. In human infants with a similar autosomal recessive syndrome of neonatal diabetes, genetic mapping and subsequent sequencing identified mutations in the human RFX6 gene. These studies demonstrate a unique position for Rfx6 in the hierarchy of factors that coordinate pancreatic islet development in both mice and humans. Rfx6 could prove useful in efforts to generate beta-cells for patients with diabetes.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Insulina/biosíntesis , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Diabetes Mellitus/congénito , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Embrión de Mamíferos/metabolismo , Femenino , Feto/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Recesivos/genética , Pruebas Genéticas , Humanos , Recién Nacido , Islotes Pancreáticos/embriología , Masculino , Ratones , Células 3T3 NIH , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Factores de Transcripción del Factor Regulador X , Síndrome , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
4.
Elife ; 92020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32410729

RESUMEN

The identification of autoantigens remains a critical challenge for understanding and treating autoimmune diseases. Autoimmune polyendocrine syndrome type 1 (APS1), a rare monogenic form of autoimmunity, presents as widespread autoimmunity with T and B cell responses to multiple organs. Importantly, autoantibody discovery in APS1 can illuminate fundamental disease pathogenesis, and many of the antigens found in APS1 extend to more common autoimmune diseases. Here, we performed proteome-wide programmable phage-display (PhIP-Seq) on sera from a cohort of people with APS1 and discovered multiple common antibody targets. These novel APS1 autoantigens exhibit tissue-restricted expression, including expression in enteroendocrine cells, pineal gland, and dental enamel. Using detailed clinical phenotyping, we find novel associations between autoantibodies and organ-restricted autoimmunity, including a link between anti-KHDC3L autoantibodies and premature ovarian insufficiency, and between anti-RFX6 autoantibodies and diarrheal-type intestinal dysfunction. Our study highlights the utility of PhIP-Seq for extensively interrogating antigenic repertoires in human autoimmunity and the importance of antigen discovery for improved understanding of disease mechanisms.


The immune system uses antibodies to fight microbes that cause disease. White blood cells pump antibodies into the bloodstream, and these antibodies latch onto bacteria and viruses, targeting them for destruction. But sometimes, the immune system gets it wrong. In autoimmune diseases, white blood cells mistakenly make antibodies that target the body's own tissues. Detecting these 'autoantibodies' in the blood can help doctors to diagnose autoimmune diseases. But the identities and targets of many autoantibodies remain unknown. In one rare disease, called autoimmune polyendocrine syndrome type 1 (APS-1), a faulty gene makes the immune system much more likely to make autoantibodies. People with this disease can develop an autoimmune response against many different healthy organs. Although APS-1 is rare, some of the autoantibodies made by individuals with the disease are the same as the ones in more common autoimmune diseases, like type 1 diabetes. Therefore, investigating the other autoantibodies produced by individuals with APS-1 could reveal the autoantibodies driving other autoimmune diseases. Autoantibodies bind to specific regions of healthy proteins, and one way to identify them is to use hundreds of thousands of tiny viruses in a technique called proteome-wide programmable phage-display, or PhIP-Seq. Each phage carries one type of protein segment. When mixed with blood serum from a patient, the autoantibodies stick to the phages that carry the target proteins for that autoantibody. These complexes can be isolated using biochemical techniques. Sequencing the genes of these phages then reveals the identity of the autoantibodies' targets. Using this technique, Vazquez et al successfully pulled 23 known autoantibodies from the serum of patients with APS-1. Then, experiments to search for new targets began. This revealed many new autoantibodies, targeting proteins found only in specific tissues. They included one that targets a protein found on cells in the gut, and another that targets a protein found on egg cells in the ovaries. Matching the PhIP-Seq data to patient symptoms confirmed that these new antibodies correlate with the features of specific autoimmune diseases. For example, patients with antibodies that targeted the gut protein were more likely to have gut symptoms, while patients with antibodies that targeted the egg cell protein were more likely to have problems with their ovaries. Further investigations using PhIP-Seq could reveal the identities of even more autoantibodies. This might pave the way for new antibody tests to diagnose autoimmune diseases and identify tissues at risk of damage. This could be useful not only for people with APS-1, but also for more common autoimmune diseases that target the same organs.


Asunto(s)
Autoanticuerpos/sangre , Autoantígenos/sangre , Autoinmunidad , Técnicas de Visualización de Superficie Celular , Poliendocrinopatías Autoinmunes/sangre , Proteoma , Proteómica , Fosfatasa Ácida/sangre , Fosfatasa Ácida/inmunología , Autoantígenos/inmunología , Biomarcadores/sangre , Femenino , Células HEK293 , Humanos , Masculino , Biblioteca de Péptidos , Poliendocrinopatías Autoinmunes/diagnóstico , Poliendocrinopatías Autoinmunes/inmunología , Proteínas/inmunología , Factores de Transcripción del Factor Regulador X/sangre , Factores de Transcripción del Factor Regulador X/inmunología
6.
Cell Metab ; 22(6): 997-1008, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26525534

RESUMEN

Catecholamines promote lipolysis both in brown and white adipocytes, whereas the same stimuli preferentially activate thermogenesis in brown adipocytes. Molecular mechanisms for the adipose-selective activation of thermogenesis remain poorly understood. Here, we employed quantitative phosphoproteomics to map global and temporal phosphorylation profiles in brown, beige, and white adipocytes under ß3-adrenenoceptor activation and identified kinases responsible for the adipose-selective phosphorylation profiles. We found that casein kinase2 (CK2) activity is preferentially higher in white adipocytes than brown/beige adipocytes. Genetic or pharmacological blockade of CK2 in white adipocytes activates the thermogenic program in response to cAMP stimuli. Such activation is largely through reduced CK2-mediated phosphorylation of class I HDACs. Notably, inhibition of CK2 promotes beige adipocyte biogenesis and leads to an increase in whole-body energy expenditure and ameliorates diet-induced obesity and insulin resistance. These results indicate that CK2 is a plausible target to rewire the ß3-adrenenoceptor signaling cascade that promotes thermogenesis in adipocytes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Quinasa de la Caseína II/metabolismo , Metabolismo Energético , Fosfopéptidos/análisis , Proteómica , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/genética , AMP Cíclico/metabolismo , Metabolismo Energético/efectos de los fármacos , Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Naftiridinas/farmacología , Norepinefrina/farmacología , Obesidad/etiología , Óxidos/farmacología , Fenazinas , Receptores Adrenérgicos beta 3/metabolismo , Transducción de Señal , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1 , Compuestos de Vanadio/farmacología
7.
J Clin Invest ; 124(9): 4093-101, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25133424

RESUMEN

Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic ß cells for people with diabetes and for targeting menin-sensitive endocrine tumors.


Asunto(s)
Islotes Pancreáticos/citología , Proteínas Proto-Oncogénicas/fisiología , Proteínas ras/fisiología , Adulto , Animales , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Proteínas Supresoras de Tumor/fisiología
8.
Nat Biotechnol ; 32(1): 76-83, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24240391

RESUMEN

Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice with chronic hyperglycemia efficiently stimulates the conversion of terminally differentiated acinar cells to beta-like cells. Newly generated beta-like cells are epigenetically reprogrammed, functional and glucose responsive, and they reinstate normal glycemic control for up to 248 d. The regenerative process depends on Stat3 signaling and requires a threshold number of Neurogenin 3 (Ngn3)-expressing acinar cells. In contrast to previous work demonstrating in vivo conversion of acinar cells to beta-like cells by viral delivery of exogenous transcription factors, our approach achieves acinar-to-beta-cell reprogramming through transient cytokine exposure rather than genetic modification.


Asunto(s)
Factor Neurotrófico Ciliar/administración & dosificación , Diabetes Mellitus/tratamiento farmacológico , Factor de Crecimiento Epidérmico/administración & dosificación , Células Secretoras de Insulina/efectos de los fármacos , Células Acinares/efectos de los fármacos , Células Acinares/patología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor Neurotrófico Ciliar/genética , Diabetes Mellitus/genética , Factor de Crecimiento Epidérmico/genética , Hiperglucemia/tratamiento farmacológico , Células Secretoras de Insulina/patología , Ratones , Ratones Endogámicos NOD/genética , Transducción de Señal
9.
PLoS One ; 7(11): e49452, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166672

RESUMEN

Brown adipose tissue (BAT) dissipates chemical energy and generates heat to protect animals from cold and obesity. Rodents possess two types of UCP-1 positive brown adipocytes arising from distinct developmental lineages: "classical" brown adipocytes develop during the prenatal stage whereas "beige" or "brite" cells that reside in white adipose tissue (WAT) develop during the postnatal stage in response to chronic cold or PPARγ agonists. Beige cells' inducible characteristics make them a promising therapeutic target for obesity treatment, however, the relevance of this cell type in humans remains unknown. In the present study, we determined the gene signatures that were unique to classical brown adipocytes and to beige cells induced by a specific PPARγ agonist rosiglitazone in mice. Subsequently we applied the transcriptional data to humans and examined the molecular signatures of human BAT isolated from multiple adipose depots. To our surprise, nearly all the human BAT abundantly expressed beige cell-selective genes, but the expression of classical brown fat-selective genes were nearly undetectable. Interestingly, expression of known brown fat-selective genes such as PRDM16 was strongly correlated with that of the newly identified beige cell-selective genes, but not with that of classical brown fat-selective genes. Furthermore, histological analyses showed that a new beige cell marker, CITED1, was selectively expressed in the UCP1-positive beige cells as well as in human BAT. These data indicate that human BAT may be primary composed of beige/brite cells.


Asunto(s)
Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Tejido Adiposo Blanco/citología , Animales , Proteínas Reguladoras de la Apoptosis , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunohistoquímica , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Factor 5 Regulador Miogénico/metabolismo , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , PPAR gamma/agonistas , Rosiglitazona , Tiazolidinedionas , Transactivadores , Factores de Transcripción/metabolismo , Proteína Desacopladora 1
10.
Dis Model Mech ; 4(2): 268-76, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21135059

RESUMEN

Transient expression of the transcription factor neurogenin-3 marks progenitor cells in the pancreas as they differentiate into islet cells. We developed a transgenic mouse line in which the surrogate markers secreted alkaline phosphatase (SeAP) and enhanced green florescent protein (EGFP) can be used to monitor neurogenin-3 expression, and thus islet cell genesis. In transgenic embryos, cells expressing EGFP lined the pancreatic ducts. SeAP was readily detectable in embryos, in the media of cultured embryonic pancreases and in the serum of adult animals. Treatment with the γ-secretase inhibitor DAPT, which blocks Notch signaling, enhanced SeAP secretion rates and increased the number of EGFP-expressing cells as assayed by fluorescence-activated cell sorting (FACS) and immunohistochemistry in cultured pancreases from embryos at embryonic day 11.5, but not in pancreases harvested 1 day later. By contrast, treatment with growth differentiation factor 11 (GDF11) reduced SeAP secretion rates. In adult mice, partial pancreatectomy decreased, whereas duct ligation increased, circulating SeAP levels. This model will be useful for studying signals involved in islet cell genesis in vivo and developing therapies that induce this process.


Asunto(s)
Diabetes Mellitus/terapia , Islotes Pancreáticos/embriología , Modelos Animales , Organogénesis , Fosfatasa Alcalina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Linaje de la Célula , Feto/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Islotes Pancreáticos/patología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Transgenes/genética
11.
Dev Biol ; 280(1): 111-21, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15766752

RESUMEN

Embryonic Hedgehog signaling is essential for proper tissue morphogenesis and organ formation along the developing gastrointestinal tract. Hedgehog ligands are expressed throughout the endodermal epithelium at early embryonic stages but excluded from the region that will form the pancreas. Ectopic activation of Hedgehog signaling at the onset of pancreas development has been shown to inhibit organ morphogenesis. In contrast, Hedgehog signaling components are found within pancreatic tissue during subsequent stages of development as well as in the mature organ, indicating that a certain level of pathway activation is required for normal organ development and function. Here, we ectopically activate the Hedgehog pathway midway through pancreas development via expression of either Sonic (Shh) or Indian Hedgehog (Ihh) under control of the human Pax4-promoter. Similar pancreatic defects are observed in both Pax4-Shh and Pax4-Ihh transgenic lines, suggesting that regulation of the overall level of Hedgehog activity is critical for proper pancreas development. We also show that Hedgehog signaling controls mesenchymal vs. epithelial tissue differentiation and that pathway activation impairs formation of epithelial progenitors. Thus, tight control of Hedgehog pathway activity throughout embryonic development ensures proper pancreas organogenesis.


Asunto(s)
Células Epiteliales/fisiología , Morfogénesis/fisiología , Páncreas/citología , Transducción de Señal , Transactivadores/metabolismo , Animales , Sistema Endocrino/embriología , Células Epiteliales/citología , Proteínas Hedgehog , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hibridación in Situ , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas/anomalías , Páncreas/embriología , Páncreas/metabolismo , Regiones Promotoras Genéticas , Células Madre/citología , Células Madre/metabolismo , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Biol Chem ; 278(19): 17130-40, 2003 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-12604598

RESUMEN

Homeodomain transcription factor Nkx2.2 is required for the final differentiation of the beta-cells in the pancreas and for the production of insulin. Nkx2.2 is expressed in islet cell precursors during pancreatic development and persists in a subset of mature islet cells including all beta-cells. To understand the mechanisms regulating the expression of Nkx2.2 in these different cell populations, we outlined the structure of the mouse nkx2.2 gene and identified regions that direct cell type-specific expression. The nkx2.2 gene has two noncoding alternative first exons (exons 1a and 1b). In transgenic mice, sequences upstream from exon 1a directed expression predominantly in mature islet cells. Within this exon 1a promoter, cooperative interactions between HNF3 and basic helix-loop-helix factors neurogenin-3 or NeuroD1 binding to adjacent sites played key roles in its islet cell-specific expression. In contrast, sequences upstream from exon 1b restricted expression specifically to islet cell precursors. These studies reveal distinct mechanisms for directing the expression of a key differentiation factor in precursors versus mature islet cells.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Islotes Pancreáticos/fisiología , Factores de Transcripción/genética , Células 3T3 , Animales , Secuencia de Bases , Exones/genética , Proteína Homeobox Nkx-2.2 , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/embriología , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares , Regiones Promotoras Genéticas/genética , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA