Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7898): 654-656, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016196

RESUMEN

The emergence of the SARS-CoV-2 variant of concern Omicron (Pango lineage B.1.1.529), first identified in Botswana and South Africa, may compromise vaccine effectiveness and lead to re-infections1. Here we investigated Omicron escape from neutralization by antibodies from South African individuals vaccinated with Pfizer BNT162b2. We used blood samples taken soon after vaccination from individuals who were vaccinated and previously infected with SARS-CoV-2 or vaccinated with no evidence of previous infection. We isolated and sequence-confirmed live Omicron virus from an infected person and observed that Omicron requires the angiotensin-converting enzyme 2 (ACE2) receptor to infect cells. We compared plasma neutralization of Omicron relative to an ancestral SARS-CoV-2 strain and found that neutralization of ancestral virus was much higher in infected and vaccinated individuals compared with the vaccinated-only participants. However, both groups showed a 22-fold reduction in vaccine-elicited neutralization by the Omicron variant. Participants who were vaccinated and had previously been infected exhibited residual neutralization of Omicron similar to the level of neutralization of the ancestral virus observed in the vaccination-only group. These data support the notion that reasonable protection against Omicron may be maintained using vaccination approaches.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , Evasión Inmune/inmunología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Humanos , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
2.
Nature ; 603(7902): 679-686, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35042229

RESUMEN

The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively1-3. In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function4. Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Evasión Inmune , SARS-CoV-2/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Botswana/epidemiología , COVID-19/inmunología , COVID-19/transmisión , Humanos , Modelos Moleculares , Mutación , Filogenia , Recombinación Genética , SARS-CoV-2/clasificación , SARS-CoV-2/inmunología , Sudáfrica/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
3.
PLoS Pathog ; 18(9): e1010450, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36054228

RESUMEN

Broadly neutralizing antibodies (bNAbs) that target the membrane-proximal external region (MPER) of HIV gp41 envelope, such as 4E10, VRC42.01 and PGZL1, can neutralize >80% of viruses. These three MPER-directed monoclonal antibodies share germline antibody genes (IGHV1-69 and IGKV3-20) and form a bNAb epitope class. Furthermore, convergent evolution within these two lineages towards a 111.2GW111.3 motif in the CDRH3 is known to enhance neutralization potency. We have previously isolated an MPER neutralizing antibody, CAP206-CH12, that uses these same germline heavy and light chain genes but lacks breadth (neutralizing only 6% of heterologous viruses). Longitudinal sequencing of the CAP206-CH12 lineage over three years revealed similar convergent evolution towards 111.2GW111.3 among some lineage members. Mutagenesis of CAP206-CH12 from 111.2GL111.3 to 111.2GW111.3 and the introduction of the double GWGW motif into CAP206-CH12 modestly improved neutralization potency (2.5-3-fold) but did not reach the levels of potency of VRC42.01, 4E10 or PGZL1. To explore the lack of potency/breadth, viral mutagenesis was performed to map the CAP206-CH12 epitope. This indicated that CAP206-CH12 is dependent on D674, a highly variable residue at the solvent-exposed elbow of MPER. In contrast, VRC42.01, PGZL1 and 4E10 were dependent on highly conserved residues (W672, F673, T676, and W680) facing the hydrophobic patch of the MPER. Therefore, while CAP206-CH12, VRC42.01, PGZL1 and 4E10 share germline genes and show some evidence of convergent evolution, their dependence on different amino acids, which impacts orientation of binding to the MPER, result in differences in breadth and potency. These data have implications for the design of HIV vaccines directed at the MPER epitope.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , VIH-1 , Aminoácidos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Epítopos/química , Epítopos/genética , Anticuerpos Anti-VIH , Proteína gp41 de Envoltorio del VIH , Humanos , Solventes
4.
Mol Biol Evol ; 39(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35325204

RESUMEN

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , COVID-19/genética , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
5.
Lancet ; 399(10323): 437-446, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35065011

RESUMEN

BACKGROUND: The SARS-CoV-2 omicron variant of concern was identified in South Africa in November, 2021, and was associated with an increase in COVID-19 cases. We aimed to assess the clinical severity of infections with the omicron variant using S gene target failure (SGTF) on the Thermo Fisher Scientific TaqPath COVID-19 PCR test as a proxy. METHODS: We did data linkages for national, South African COVID-19 case data, SARS-CoV-2 laboratory test data, SARS-CoV-2 genome data, and COVID-19 hospital admissions data. For individuals diagnosed with COVID-19 via TaqPath PCR tests, infections were designated as either SGTF or non-SGTF. The delta variant was identified by genome sequencing. Using multivariable logistic regression models, we assessed disease severity and hospitalisations by comparing individuals with SGTF versus non-SGTF infections diagnosed between Oct 1 and Nov 30, 2021, and we further assessed disease severity by comparing SGTF-infected individuals diagnosed between Oct 1 and Nov 30, 2021, with delta variant-infected individuals diagnosed between April 1 and Nov 9, 2021. FINDINGS: From Oct 1 (week 39), 2021, to Dec 6 (week 49), 2021, 161 328 cases of COVID-19 were reported in South Africa. 38 282 people were diagnosed via TaqPath PCR tests and 29 721 SGTF infections and 1412 non-SGTF infections were identified. The proportion of SGTF infections increased from two (3·2%) of 63 in week 39 to 21 978 (97·9%) of 22 455 in week 48. After controlling for factors associated with hospitalisation, individuals with SGTF infections had significantly lower odds of admission than did those with non-SGTF infections (256 [2·4%] of 10 547 vs 121 [12·8%] of 948; adjusted odds ratio [aOR] 0·2, 95% CI 0·1-0·3). After controlling for factors associated with disease severity, the odds of severe disease were similar between hospitalised individuals with SGTF versus non-SGTF infections (42 [21%] of 204 vs 45 [40%] of 113; aOR 0·7, 95% CI 0·3-1·4). Compared with individuals with earlier delta variant infections, SGTF-infected individuals had a significantly lower odds of severe disease (496 [62·5%] of 793 vs 57 [23·4%] of 244; aOR 0·3, 95% CI 0·2-0·5), after controlling for factors associated with disease severity. INTERPRETATION: Our early analyses suggest a significantly reduced odds of hospitalisation among individuals with SGTF versus non-SGTF infections diagnosed during the same time period. SGTF-infected individuals had a significantly reduced odds of severe disease compared with individuals infected earlier with the delta variant. Some of this reduced severity is probably a result of previous immunity. FUNDING: The South African Medical Research Council, the South African National Department of Health, US Centers for Disease Control and Prevention, the African Society of Laboratory Medicine, Africa Centers for Disease Control and Prevention, the Bill & Melinda Gates Foundation, the Wellcome Trust, and the Fleming Fund.


Asunto(s)
COVID-19/fisiopatología , Hospitalización/estadística & datos numéricos , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Adolescente , Adulto , COVID-19/epidemiología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Niño , Preescolar , Femenino , Genoma Viral , Humanos , Almacenamiento y Recuperación de la Información , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Sudáfrica/epidemiología , Adulto Joven
6.
Nucleic Acids Res ; 48(D1): D964-D970, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31566225

RESUMEN

High-throughput sequencing of the adaptive immune receptor repertoire (AIRR-seq) is providing unprecedented insights into the immune response to disease and into the development of immune disorders. The accurate interpretation of AIRR-seq data depends on the existence of comprehensive germline gene reference sets. Current sets are known to be incomplete and unrepresentative of the degree of polymorphism and diversity in human and animal populations. A key issue is the complexity of the genomic regions in which they lie, which, because of the presence of multiple repeats, insertions and deletions, have not proved tractable with short-read whole genome sequencing. Recently, tools and methods for inferring such gene sequences from AIRR-seq datasets have become available, and a community approach has been developed for the expert review and publication of such inferences. Here, we present OGRDB, the Open Germline Receptor Database (https://ogrdb.airr-community.org), a public resource for the submission, review and publication of previously unknown receptor germline sequences together with supporting evidence.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genómica , Receptores Inmunológicos/genética , Genómica/métodos , Humanos , Programas Informáticos , Navegador Web
7.
PLoS Pathog ; 15(12): e1008064, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841557

RESUMEN

Broadly neutralizing antibodies (bNAbs) protect against HIV infection in non-human primates and their efficacy may be enhanced through interaction with Fc receptors on immune cells. Antibody isotype is a modulator of this binding with the IgG3 subclass mediating potent Fc effector function and is associated with HIV vaccine efficacy and HIV control. BNAb functions are typically assessed independently of the constant region with which they are naturally expressed. To examine the role of natural isotype in the context of a bNAb lineage we studied CAP256, an HIV-infected individual that mounted a potent V2-specific bNAb response. CAP256 expressed persistently high levels of plasma IgG3 which we found mediated both broad neutralizing activity and potent Fc function. Sequencing of germline DNA and the constant regions of V2-directed bNAbs from this donor revealed the expression of a novel IGHG3 allele as well as IGHG3*17, an allele that produces IgG3 antibodies with increased plasma half-life. Both allelic variants were used to generate CAP256-VRC26.25 and CAP256-VRC26.29 IgG3 bNAbs and these were compared to IgG1 versions. IgG3 variants were shown to have significantly higher phagocytosis and trogocytosis compared to IgG1 versions, which corresponded to increased affinity for FcγRIIa. Neutralization potency was also significantly higher for IgG3 bNAbs, particularly against viruses lacking the N160 glycan. By exchanging hinge regions between subclass variants, we showed that hinge length modulated both neutralization potency and Fc function. This study showed that co-operation between the variable and natural IgG3 constant regions enhanced the polyfunctionality of antibodies, indicating the value of leveraging genetic variation which could be exploited for passive immunity.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Inmunoglobulina G/inmunología , Isotipos de Inmunoglobulinas/inmunología , Adulto , Femenino , Infecciones por VIH/inmunología , Humanos , Receptores Fc/inmunología
8.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567996

RESUMEN

The development of HIV broadly neutralizing antibodies (bNAbs) has previously been shown to be associated with viral evolution and high levels of genetic diversity in the HIV envelope (Env) glycoprotein. However, few studies have examined Env evolution in those who fail to develop neutralization breadth in order to assess whether bNAbs result from distinct evolutionary pathways. We compared Env evolution in eight HIV-1-infected participants who developed bNAbs to six donors with similar viral loads who did not develop bNAbs over three years of infection. We focused on Env V1V2 and C3V4, as these are major targets for both strain-specific neutralizing antibodies (nAbs) and bNAbs. Overall evolutionary rates (ranging from 9.92 × 10-3 to 4.1 × 10-2 substitutions/site/year) and viral diversity (from 1.1% to 6.5%) across Env, and within targeted epitopes, did not distinguish bNAb donors from non-bNAb donors. However, bNAb participants had more positively selected residues within epitopes than those without bNAbs, and several of these were common among bNAb donors. A comparison of the kinetics of strain-specific nAbs and bNAbs indicated that selection pressure at these residues increased with the onset of breadth. These data suggest that highly targeted viral evolution rather than overall envelope diversity is associated with neutralization breadth. The association of shared positively selected sites with the onset of breadth highlights the importance of diversity at specific positions in these epitopes for bNAb development, with implications for the development of sequential and cocktail immunization strategies.IMPORTANCE Millions of people are still being infected with HIV decades after the first recognition of the virus. Currently, no vaccine is able to elicit bNAbs that will prevent infection by global HIV strains. Several studies have implicated HIV Env diversity in the development of breadth. However, Env evolution in individuals who fail to develop breadth despite mounting potent strain-specific neutralizing responses has not been well defined. Using longitudinal neutralization, epitope mapping, and sequence data from 14 participants, we found that overall measures of viral diversity were similar in all donors. However, the number of positively selected sites within Env epitopes was higher in bNAb participants than in strain-specific donors. We further identified common sites that were positively selected as bNAbs developed. These data indicate that while viral diversity is required for breadth, this should be highly targeted to specific residues to shape the elicitation of bNAbs by vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Mapeo Epitopo/métodos , Epítopos/inmunología , Femenino , Infecciones por VIH/virología , Humanos , Inmunización/métodos , Plasma/inmunología
9.
J Virol ; 93(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30842323

RESUMEN

HIV-1 has been shown to evolve independently in different anatomical compartments, but studies in the female genital tract have been inconclusive. Here, we examined evidence of compartmentalization using HIV-1 subtype C envelope (Env) glycoprotein genes (gp160) obtained from matched cervicovaginal lavage (CVL) and plasma samples over 2 to 3 years of infection. HIV-1 gp160 amplification from CVL was achieved for only 4 of 18 acutely infected women, and this was associated with the presence of proinflammatory cytokines and/or measurable viremia in the CVL. Maximum likelihood trees and divergence analyses showed that all four individuals had monophyletic compartment-specific clusters of CVL- and/or plasma-derived gp160 sequences at all or some time points. However, two participants (CAP177 and CAP217) had CVL gp160 diversity patterns that differed from those in plasma and showed restricted viral flow from the CVL. Statistical tests of compartmentalization revealed evidence of persistent compartment-specific gp160 evolution in CAP177, while in CAP217 this was intermittent. Lastly, we identified several Env sites that distinguished viruses in these two compartments; for CAP177, amino acid differences arose largely through positive selection, while insertions/deletions were more common in CAP217. In both cases these differences contributed to substantial charge changes spread across the Env. Our data indicate that, in some women, HIV-1 populations within the genital tract can have Env genetic features that differ from those of viruses in plasma, which could impact the sensitivity of viruses in the genital tract to vaginal microbicides and vaccine-elicited antibodies.IMPORTANCE Most HIV-1 infections in sub-Saharan Africa are acquired heterosexually through the genital mucosa. Understanding the properties of viruses replicating in the female genital tract, and whether these properties differ from those of more commonly studied viruses replicating in the blood, is therefore important. Using longitudinal CVL and plasma-derived sequences from four HIV-1 subtype C-infected women, we found fewer viral migrations from the genital tract to plasma than in the opposite direction, suggesting a mucosal sieve effect from the genital tract to the blood compartment. Evidence for both persistent and intermittent compartmentalization between the genital tract and plasma viruses during chronic infection was detected in two of four individuals, perhaps explaining previously conflicting findings. In cases where compartmentalization occurred, comparison of CVL- and plasma-derived HIV sequences indicated that distinct features of viral populations in the CVL may affect the efficacy of microbicides and vaccines designed to provide mucosal immunity.


Asunto(s)
Genitales Femeninos/virología , Proteínas gp160 de Envoltorio del VIH/genética , Vagina/virología , Adolescente , Adulto , Femenino , Anticuerpos Anti-VIH/genética , Proteínas gp160 de Envoltorio del VIH/metabolismo , Infecciones por VIH/virología , Seropositividad para VIH/genética , VIH-1/inmunología , VIH-1/metabolismo , VIH-1/patogenicidad , Humanos , Estudios Longitudinales , Persona de Mediana Edad , Especificidad de Órganos/genética , Filogenia , ARN Viral/genética , Infecciones del Sistema Genital/virología , Sudáfrica , Carga Viral , Viremia/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
11.
J Immunol ; 194(9): 4371-8, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25825450

RESUMEN

The human Ig repertoire is vast, producing billions of unique Abs from a limited number of germline Ig genes. The IgH V region (IGHV) is central to Ag binding and consists of 48 functional genes. In this study, we analyzed whether HIV-1-infected individuals who develop broadly neutralizing Abs show a distinctive germline IGHV profile. Using both 454 and Illumina technologies, we sequenced the IGHV repertoire of 28 HIV-infected South African women from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 002 and 004 cohorts, 13 of whom developed broadly neutralizing Abs. Of the 259 IGHV alleles identified in this study, approximately half were not found in the International Immunogenetics Database (IMGT). This included 85 entirely novel alleles and 38 alleles that matched rearranged sequences in non-IMGT databases. Analysis of the rearranged H chain V region genes of mAbs isolated from seven of these women, as well as previously isolated broadly neutralizing Abs from other donors, provided evidence that at least eight novel or non-IMGT alleles contributed to functional Abs. Importantly, we found that, despite a wide range in the number of IGHV alleles in each individual, including alleles used by known broadly neutralizing Abs, there were no significant differences in germline IGHV repertoires between individuals who do and do not develop broadly neutralizing Abs. This study reports novel IGHV repertoires and highlights the importance of a fully comprehensive Ig database for germline gene usage prediction. Furthermore, these data suggest a lack of genetic bias in broadly neutralizing Ab development in HIV-1 infection, with positive implications for HIV vaccine design.


Asunto(s)
Anticuerpos Neutralizantes , Genes de Inmunoglobulinas , Células Germinativas/metabolismo , Anticuerpos Anti-VIH/genética , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/inmunología , Adulto , Alelos , Población Negra/genética , Femenino , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Filogenia , Adulto Joven
12.
Nat Commun ; 14(1): 6325, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816740

RESUMEN

As global SARS-CoV-2 burden and testing frequency have decreased, wastewater surveillance has emerged as a key tool to support clinical surveillance efforts. The aims of this study were to identify and characterize SARS-CoV-2 variants in wastewater samples collected from urban centers across South Africa. Here we show that wastewater sequencing analyses are temporally concordant with clinical genomic surveillance and reveal the presence of multiple lineages not detected by clinical surveillance. We show that wastewater genomics can support SARS-CoV-2 epidemiological investigations by reliably recovering the prevalence of local circulating variants, even when clinical samples are not available. Further, we find that analysis of mutations observed in wastewater can provide a signal of upcoming lineage transitions. Our study demonstrates the utility of wastewater genomics to monitor evolution and spread of endemic viruses.


Asunto(s)
COVID-19 , Aguas Residuales , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Monitoreo Epidemiológico Basado en Aguas Residuales , Genómica
13.
Trends Mol Med ; 28(11): 979-988, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36117072

RESUMEN

Broadly neutralizing antibodies (bNAbs), when administered through passive immunization, are protective against HIV-1 infection. Current HIV-1 vaccine strategies are aimed at guiding the immune system to make bNAbs by mimicking their development during infection. Somatic hypermutation of the variable region is known to be crucial for the development of bNAbs. More recently, however, studies have shown how class-switch recombination (CSR) resulting in the generation of different antibody isotypes may serve as an additional mechanism through which antibodies can gain neutralization breadth and potency. In this review, we discuss the importance of different antibody isotypes for HIV-1 neutralization breadth and potency and how this information can be leveraged to improve passive and active immunization against HIV-1.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Anticuerpos Anti-VIH , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , Isotipos de Inmunoglobulinas , Infecciones por VIH/prevención & control
14.
iScience ; 25(1): 103564, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34984325

RESUMEN

Public antibody clonotypes shared among multiple individuals have been identified for several pathogens. However, little is known about the determinants of antibody "publicness". Here, we characterize the sequence and functional properties of antibodies from a public clonotype targeting the CD4 binding site on HIV-1 Env. Our results showed that HIV-1 specificity for the public antibodies studied here, comprising sequences from three individuals, was modulated by the VH, but not VL, germline gene. Non-native pairing of public heavy and light chains from different individuals suggested functional complementation of sequences within this public antibody clonotype. The strength of antigen recognition appeared to be dependent on the specific antibody light chain used, but not on other sequence features such as native-antibody or germline sequence identity. Understanding the determinants of antibody clonotype "publicness" can provide insights into the fundamental rules of host-pathogen interactions at the population level, with implications for clonotype-specific vaccine development.

15.
Sci Rep ; 12(1): 16473, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182959

RESUMEN

Antibodies with the same variable region can exist as multiple isotypes with varying neutralization potencies, though the mechanism for this is not fully defined. We previously isolated an HIV-directed IgA1 monoclonal antibody (mAb), CAP88-CH06, and showed that IgA1 and IgG3 isotypes of this antibody demonstrated enhanced neutralization compared to IgG1. To explore the mechanism behind this, hinge region and constant heavy chain (CH1) chimeras were constructed between the IgA1, IgG3 and IgG1 mAbs and assessed for neutralization activity, antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC). Hinge chimeras revealed that the increased neutralization potency and phagocytosis of the IgG3 isotype was attributed to its longer hinge region. In contrast, for IgA1, CH1 chimeras showed that this region was responsible both for enhanced neutralization potency and decreased ADCP, though ADCC was not affected. Overall, these data show that the enhanced neutralization potency of CAP88-CH06 IgG3 and IgA1, compared to IgG1, is achieved through distinct mechanisms. Understanding the influence of the hinge and CH1 regions on Fab domain function may provide insights into the engineering of therapeutic antibodies with increased neutralization potency.


Asunto(s)
Infecciones por VIH , VIH-1 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH/genética , VIH-1/genética , Humanos , Inmunoglobulina A/genética , Inmunoglobulina G
16.
Nat Commun ; 13(1): 5860, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195617

RESUMEN

Omicron lineages BA.4 and BA.5 drove a fifth wave of COVID-19 cases in South Africa. Here, we use the presence/absence of the S-gene target as a proxy for SARS-CoV-2 variant/lineage for infections diagnosed using the TaqPath PCR assay between 1 October 2021 and 26 April 2022. We link national COVID-19 individual-level data including case, laboratory test and hospitalisation data. We assess severity using multivariable logistic regression comparing the risk of hospitalisation and risk of severe disease, once hospitalised, for Delta, BA.1, BA.2 and BA.4/BA.5 infections. After controlling for factors associated with hospitalisation and severe outcome respectively, BA.4/BA.5-infected individuals had a similar odds of hospitalisation (aOR 1.24, 95% CI 0.98-1.55) and severe outcome (aOR 0.72, 95% CI 0.41-1.26) compared to BA.1-infected individuals. Newly emerged Omicron lineages BA.4/BA.5 showed similar severity to the BA.1 lineage and continued to show reduced clinical severity compared to the Delta variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , SARS-CoV-2/genética , Sudáfrica/epidemiología
17.
Nat Med ; 28(9): 1785-1790, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35760080

RESUMEN

Three lineages (BA.1, BA.2 and BA.3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern predominantly drove South Africa's fourth Coronavirus Disease 2019 (COVID-19) wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and similar to BA.2 except for the addition of 69-70 deletion (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild-type amino acid at Q493. The two lineages differ only outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimated growth advantages for BA.4 and BA.5 of 0.08 (95% confidence interval (CI): 0.08-0.09) and 0.10 (95% CI: 0.09-0.11) per day, respectively, over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Aminoácidos , Animales , COVID-19/epidemiología , Humanos , SARS-CoV-2/genética , Sudáfrica/epidemiología , Glicoproteína de la Espiga del Coronavirus/genética
18.
Nat Commun ; 13(1): 1976, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396511

RESUMEN

Global genomic surveillance of SARS-CoV-2 has identified variants associated with increased transmissibility, neutralization resistance and disease severity. Here we report the emergence of the PANGO lineage C.1.2, detected at low prevalence in South Africa and eleven other countries. The initial C.1.2 detection is associated with a high substitution rate, and includes changes within the spike protein that have been associated with increased transmissibility or reduced neutralization sensitivity in SARS-CoV-2 variants of concern or variants of interest. Like Beta and Delta, C.1.2 shows significantly reduced neutralization sensitivity to plasma from vaccinees and individuals infected with the ancestral D614G virus. In contrast, convalescent donors infected with either Beta or Delta show high plasma neutralization against C.1.2. These functional data suggest that vaccine efficacy against C.1.2 will be equivalent to Beta and Delta, and that prior infection with either Beta or Delta will likely offer protection against C.1.2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
19.
bioRxiv ; 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35075456

RESUMEN

Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any genomes within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.

20.
medRxiv ; 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34909788

RESUMEN

The emergence of SARS-CoV-2 Omicron, first identified in Botswana and South Africa, may compromise vaccine effectiveness and the ability of antibodies triggered by previous infection to protect against re-infection (1). Here we investigated whether Omicron escapes antibody neutralization in South Africans, either previously SARS-CoV-2 infected or uninfected, who were vaccinated with Pfizer BNT162b2. We also investigated if Omicron requires the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa and compared plasma neutralization of this virus relative to an ancestral SARS-CoV-2 strain with the D614G mutation, observing that Omicron still required ACE2 to infect. For neutralization, blood samples were taken soon after vaccination, so that vaccine elicited neutralization was close to peak. Neutralization capacity of the D614G virus was much higher in infected and vaccinated versus vaccinated only participants but both groups had 22-fold Omicron escape from vaccine elicited neutralization. Previously infected and vaccinated individuals had residual neutralization predicted to confer 73% protection from symptomatic Omicron infection, while those without previous infection were predicted to retain only about 35%. Both groups were predicted to have substantial protection from severe disease. These data support the notion that high neutralization capacity elicited by a combination of infection and vaccination, and possibly boosting, could maintain reasonable effectiveness against Omicron. A waning neutralization response is likely to decrease vaccine effectiveness below these estimates. However, since protection from severe disease requires lower neutralization levels and involves T cell immunity, such protection may be maintained.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA