Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 89(4): 726-739, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33410532

RESUMEN

OBJECTIVE: Approximately 50% of patients with tuberous sclerosis complex develop infantile spasms, a sudden onset epilepsy syndrome associated with poor neurological outcomes. An increased burden of tubers confers an elevated risk of infantile spasms, but it remains unknown whether some tuber locations confer higher risk than others. Here, we test whether tuber location and connectivity are associated with infantile spasms. METHODS: We segmented tubers from 123 children with (n = 74) and without (n = 49) infantile spasms from a prospective observational cohort. We used voxelwise lesion symptom mapping to test for an association between spasms and tuber location. We then used lesion network mapping to test for an association between spasms and connectivity with tuber locations. Finally, we tested the discriminability of identified associations with logistic regression and cross-validation as well as statistical mediation. RESULTS: Tuber locations associated with infantile spasms were heterogenous, and no single location was significantly associated with spasms. However, >95% of tuber locations associated with spasms were functionally connected to the globi pallidi and cerebellar vermis. These connections were specific compared to tubers in patients without spasms. Logistic regression found that globus pallidus connectivity was a stronger predictor of spasms (odds ratio [OR] = 1.96, 95% confidence interval [CI] = 1.10-3.50, p = 0.02) than tuber burden (OR = 1.65, 95% CI = 0.90-3.04, p = 0.11), with a mean receiver operating characteristic area under the curve of 0.73 (±0.1) during repeated cross-validation. INTERPRETATION: Connectivity between tuber locations and the bilateral globi pallidi is associated with infantile spasms. Our findings lend insight into spasm pathophysiology and may identify patients at risk. ANN NEUROL 2021;89:726-739.


Asunto(s)
Hamartoma/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Espasmos Infantiles/diagnóstico por imagen , Esclerosis Tuberosa/diagnóstico por imagen , Edad de Inicio , Mapeo Encefálico , Núcleos Cerebelosos/diagnóstico por imagen , Núcleos Cerebelosos/patología , Preescolar , Conectoma , Femenino , Globo Pálido/diagnóstico por imagen , Globo Pálido/patología , Hamartoma/patología , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/patología , Estudios Prospectivos , Curva ROC , Espasmos Infantiles/patología , Esclerosis Tuberosa/patología
2.
Mol Psychiatry ; 26(6): 2089-2100, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32372008

RESUMEN

Psychiatry is undergoing a paradigm shift from the acceptance of distinct diagnoses to a representation of psychiatric illness that crosses diagnostic boundaries. How this transition is supported by a shared neurobiology remains largely unknown. In this study, we first identify single nucleotide polymorphisms (SNPs) associated with psychiatric disorders based on 136 genome-wide association studies. We then conduct a joint analysis of these SNPs and brain structural connectomes in 678 healthy children in the PING study. We discovered a strong, robust, and transdiagnostic mode of genome-connectome covariation which is positively and specifically correlated with genetic risk for psychiatric illness at the level of individual SNPs. Similarly, this mode is also significantly positively correlated with polygenic risk scores for schizophrenia, alcohol use disorder, major depressive disorder, a combined bipolar disorder-schizophrenia phenotype, and a broader cross-disorder phenotype, and significantly negatively correlated with a polygenic risk score for educational attainment. The resulting "vulnerability network" is shown to mediate the influence of genetic risks onto behaviors related to psychiatric vulnerability (e.g., marijuana, alcohol, and caffeine misuse, perceived stress, and impulsive behavior). Its anatomy overlaps with the default-mode network, with a network of cognitive control, and with the occipital cortex. These findings suggest that the brain vulnerability network represents an endophenotype funneling genetic risks for various psychiatric illnesses through a common neurobiological root. It may form part of the neural underpinning of the well-recognized but poorly explained overlap and comorbidity between psychiatric disorders.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Trastornos Mentales , Trastorno Bipolar/genética , Encéfalo , Trastorno Depresivo Mayor/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Mentales/genética , Herencia Multifactorial/genética
3.
Cereb Cortex ; 30(4): 2199-2214, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-31812987

RESUMEN

Tuberous sclerosis complex (TSC) is a rare genetic disorder characterized by benign tumors throughout the body; it is generally diagnosed early in life and has a high prevalence of autism spectrum disorder (ASD), making it uniquely valuable in studying the early development of autism, before neuropsychiatric symptoms become apparent. One well-documented deficit in ASD is an impairment in face processing. In this work, we assessed whether anatomical connectivity patterns of the fusiform gyrus, a central structure in face processing, capture the risk of developing autism early in life. We longitudinally imaged TSC patients at 1, 2, and 3 years of age with diffusion compartment imaging. We evaluated whether the anatomical connectivity fingerprint of the fusiform gyrus was associated with the risk of developing autism measured by the Autism Observation Scale for Infants (AOSI). Our findings suggest that the fusiform gyrus connectivity captures the risk of developing autism as early as 1 year of age and provides evidence that abnormal fusiform gyrus connectivity increases with age. Moreover, the identified connections that best capture the risk of developing autism involved the fusiform gyrus and limbic and paralimbic regions that were consistent with the ASD phenotype, involving an increased number of left-lateralized structures with increasing age.


Asunto(s)
Trastorno Autístico/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Esclerosis Tuberosa/diagnóstico por imagen , Trastorno Autístico/etiología , Preescolar , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética/métodos , Masculino , Estudios Prospectivos , Factores de Riesgo , Esclerosis Tuberosa/complicaciones
4.
Neuroimage ; 221: 117128, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673745

RESUMEN

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 â€‹mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.


Asunto(s)
Algoritmos , Encéfalo/diagnóstico por imagen , Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Adulto , Imagen de Difusión por Resonancia Magnética/instrumentación , Imagen de Difusión por Resonancia Magnética/normas , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Neuroimagen/instrumentación , Neuroimagen/normas , Análisis de Regresión
5.
J Cardiovasc Magn Reson ; 22(1): 49, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600420

RESUMEN

BACKGROUND: The right ventricle (RV) often fails when functioning as the systemic ventricle, but the cause is not understood. We tested the hypothesis that myofiber organization is abnormal in the failing systemic right ventricle. METHODS: We used diffusion-weighted cardiovascular magnetic resonance imaging to examine 3 failing hearts explanted from young patients with a systemic RV and one structurally normal heart with postnatally acquired RV hypertrophy for comparison. Diffusion compartment imaging was computed to separate the free diffusive component representing free water from an anisotropic component characterizing the orientation and diffusion characteristics of myofibers. The orientation of each anisotropic compartment was displayed in glyph format and used for qualitative description of myofibers and for construction of tractograms. The helix angle was calculated across the ventricular walls in 5 locations and displayed graphically. Scalar parameters (fractional anisotropy and mean diffusivity) were compared among specimens. RESULTS: The hypertrophied systemic RV has an inner layer, comprising about 2/3 of the wall, composed of hypertrophied trabeculae and an epicardial layer of circumferential myofibers. Myofibers within smaller trabeculae are aligned and organized with parallel fibers while larger, composite bundles show marked disarray, largely between component trabeculae. We observed a narrow range of helix angles in the outer, compact part of the wall consistent with aligned, approximately circumferential fibers. However, there was marked variation of helix angle in the inner, trabecular part of the wall consistent with marked variation in fiber orientation. The apical whorl was disrupted or incomplete and we observed myocardial whorls or vortices at other locations. Fractional anisotropy was lower in abnormal hearts while mean diffusivity was more variable, being higher in 2 but lower in 1 heart, compared to the structurally normal heart. CONCLUSIONS: Myofiber organization is abnormal in the failing systemic RV and might be an important substrate for heart failure and arrhythmia. It is unclear if myofiber disorganization is due to hemodynamic factors, developmental problems, or both.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Cardiopatías Congénitas/diagnóstico por imagen , Insuficiencia Cardíaca/diagnóstico por imagen , Ventrículos Cardíacos/diagnóstico por imagen , Miocardio/patología , Miofibrillas/patología , Disfunción Ventricular Derecha/diagnóstico por imagen , Función Ventricular Derecha , Adolescente , Preescolar , Femenino , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/cirugía , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/cirugía , Trasplante de Corazón , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/cirugía , Humanos , Masculino , Valor Predictivo de las Pruebas , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/cirugía , Adulto Joven
6.
Neuroimage ; 184: 964-980, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30282007

RESUMEN

Many closed-form analytical models have been proposed to relate the diffusion-weighted magnetic resonance imaging (DW-MRI) signal to microstructural features of white matter tissues. These models generally make assumptions about the tissue and the diffusion processes which often depart from the biophysical reality, limiting their reliability and interpretability in practice. Monte Carlo simulations of the random walk of water molecules are widely recognized to provide near groundtruth for DW-MRI signals. However, they have mostly been limited to the validation of simpler models rather than used for the estimation of microstructural properties. This work proposes a general framework which leverages Monte Carlo simulations for the estimation of physically interpretable microstructural parameters, both in single and in crossing fascicles of axons. Monte Carlo simulations of DW-MRI signals, or fingerprints, are pre-computed for a large collection of microstructural configurations. At every voxel, the microstructural parameters are estimated by optimizing a sparse combination of these fingerprints. Extensive synthetic experiments showed that our approach achieves accurate and robust estimates in the presence of noise and uncertainties over fixed or input parameters. In an in vivo rat model of spinal cord injury, our approach provided microstructural parameters that showed better correspondence with histology than five closed-form models of the diffusion signal: MMWMD, NODDI, DIAMOND, WMTI and MAPL. On whole-brain in vivo data from the human connectome project (HCP), our method exhibited spatial distributions of apparent axonal radius and axonal density indices in keeping with ex vivo studies. This work paves the way for microstructure fingerprinting with Monte Carlo simulations used directly at the modeling stage and not only as a validation tool.


Asunto(s)
Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Método de Montecarlo , Sustancia Blanca/anatomía & histología , Animales , Simulación por Computador , Femenino , Humanos , Modelos Teóricos , Ratas Long-Evans , Relación Señal-Ruido
7.
Neuroimage ; 201: 116013, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31326575

RESUMEN

Micro-architectural characteristics of white matter can be inferred through analysis of diffusion-weighted magnetic resonance imaging (dMRI). The diffusion-dependent signal can be analyzed through several methods, with the tensor model being the most frequently used due to its straightforward interpretation and low requirements for acquisition parameters. While valuable information can be gained from the tensor-derived metrics in regions of homogeneous tissue organization, this model does not provide reliable microstructural information at crossing fiber regions, which are pervasive throughout human white matter. Several multiple fiber models have been proposed that seem to overcome the limitations of the tensor, with few providing per-bundle dMRI-derived metrics. However, biological interpretations of such metrics are limited by the lack of histological confirmation. To this end, we developed a straightforward biological validation framework. Unilateral retinal ischemia was induced in ten rats, which resulted in axonal (Wallerian) degeneration of the corresponding optic nerve, while the contralateral was left intact; the intact and injured axonal populations meet at the optic chiasm as they cross the midline, generating a fiber crossing region in which each population has different diffusion properties. Five rats served as controls. High-resolution ex vivo dMRI was acquired five weeks after experimental procedures. We correlated and compared histology to per-bundle descriptors derived from three methodologies for dMRI analysis (constrained spherical deconvolution and two multi-tensor representations). We found a tight correlation between axonal density (as evaluated through automatic segmentation of histological sections) with per-bundle apparent fiber density and fractional anisotropy (derived from dMRI). The multi-fiber methods explored were able to correctly identify the damaged fiber populations in a region of fiber crossings (chiasm). Our results provide validation of metrics that bring substantial and clinically useful information about white-matter tissue at crossing fiber regions. Our proposed framework is useful to validate other current and future dMRI methods.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fibras Nerviosas Mielínicas , Degeneración Walleriana , Animales , Benchmarking , Femenino , Ratas , Ratas Wistar , Agua
8.
Magn Reson Med ; 81(5): 3314-3329, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30443929

RESUMEN

PURPOSE: To achieve motion-robust diffusion compartment imaging (DCI) in near continuously moving subjects based on simultaneous multi-slice, diffusion-weighted brain MRI. METHODS: Simultaneous multi-slice (SMS) acquisition enables fast and dense sampling of k- and q-space. We propose to achieve motion-robust DCI via slice-level motion correction by exploiting the rigid coupling between simultaneously acquired slices. This coupling provides 3D coverage of the anatomy that substantially constraints the slice-to-volume alignment problem. This is incorporated into an explicit model of motion dynamics that handles continuous and large subject motion in robust DCI reconstruction. RESULTS: We applied the proposed technique, called Motion Tracking based on Simultanous Multislice Registration (MT-SMR) to multi b-value SMS diffusion-weighted brain MRI of healthy volunteers and motion-corrupted scans of 20 pediatric subjects. Quantitative and qualitative evaluation based on fractional anisotropy in unidirectional fiber regions, and DCI in crossing-fiber regions show robust reconstruction in the presence of motion. CONCLUSION: The proposed approach has the potential to extend routine use of SMS DCI in very challenging populations, such as young children, newborns, and non-cooperative patients.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Adolescente , Adulto , Algoritmos , Anisotropía , Niño , Preescolar , Voluntarios Sanos , Humanos , Modelos Estadísticos , Movimiento (Física) , Reproducibilidad de los Resultados
9.
Cereb Cortex ; 28(10): 3665-3672, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29939236

RESUMEN

INTRODUCTION: Neurological manifestations in Tuberous Sclerosis Complex (TSC) are highly variable. Diffusion tensor imaging (DTI) may reflect the neurological disease burden. We analyzed the association of autism spectrum disorder (ASD), intellectual disability (ID) and epilepsy with callosal DTI metrics in subjects with and without TSC. METHODS: 186 children underwent 3T MRI DTI: 51 with TSC (19 with concurrent ASD), 46 with non-syndromic ASD and 89 healthy controls (HC). Subgroups were based on presence of TSC, ASD, ID, and epilepsy. Density-weighted DTI metrics obtained from tractography of the corpus callosum were fitted using a 2-parameter growth model. We estimated distributions using bootstrapping and calculated half-life and asymptote of the fitted curves. RESULTS: TSC was associated with a lower callosal fractional anisotropy (FA) than ASD, and ASD with a lower FA than HC. ID, epilepsy and ASD diagnosis were each associated with lower FA values, demonstrating additive effects. In TSC, the largest change in FA was related to a comorbid diagnosis of ASD. Mean diffusivity (MD) showed an inverse relationship to FA. Some subgroups were too small for reliable data fitting. CONCLUSIONS: Using a cross-disorder approach, this study demonstrates cumulative abnormality of callosal white matter diffusion with increasing neurological comorbidity.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico por imagen , Cuerpo Calloso/diagnóstico por imagen , Esclerosis Tuberosa/complicaciones , Esclerosis Tuberosa/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Adulto , Anisotropía , Niño , Preescolar , Imagen de Difusión Tensora , Epilepsia/diagnóstico por imagen , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Discapacidad Intelectual/diagnóstico por imagen , Masculino , Adulto Joven
10.
Magn Reson Med ; 79(4): 2332-2345, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28714064

RESUMEN

PURPOSE: To assess the validity of the superposition approximation for crossing fascicles, i.e., the assumption that the total diffusion-weighted MRI signal is the sum of the signals arising from each fascicle independently, even when the fascicles intermingle in a voxel. METHODS: Monte Carlo simulations were used to study the impact of the approximation on the diffusion-weighted MRI signal and to assess whether this approximate model allows microstructural features of interwoven fascicles to be accurately estimated, despite signal differences. RESULTS: Small normalized signal differences were observed, typically 10-3-10-2. The use of the approximation had little impact on the estimation of the crossing angle, the axonal density index, and the radius index in clinically realistic scenarios wherein the acquisition noise was the predominant source of errors. In the absence of noise, large systematic errors due to the superposition approximation only persisted for the radius index, mainly driven by a low sensitivity of diffusion-weighted MRI signals to small radii in general. CONCLUSION: The use of the superposition approximation rather than a model of interwoven fascicles does not adversely impact the estimation of microstructural features of interwoven fascicles in most current clinical settings. Magn Reson Med 79:2332-2345, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Axones , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Algoritmos , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Método de Montecarlo , Fantasmas de Imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido
11.
Pediatr Radiol ; 48(1): 141-145, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866805

RESUMEN

This technical innovation describes the development of a novel device to aid technologists in reducing exposure variation and repeat imaging in computed and digital radiography. The device consists of a color video and depth camera in combination with proprietary software and user interface. A monitor in the x-ray control room displays the position of the patient in real time with respect to automatic exposure control chambers and image receptor area. The thickness of the body part of interest is automatically displayed along with a motion indicator for the examined body part. The aim is to provide an automatic measurement of patient thickness to set the x-ray technique and to assist the technologist in detecting errors in positioning and motion before the patient is exposed. The device has the potential to reduce the incidence of repeat imaging by addressing problems technologists encounter daily during the acquisition of radiographs.


Asunto(s)
Imagenología Tridimensional/instrumentación , Intensificación de Imagen Radiográfica/instrumentación , Programas Informáticos , Tecnología Radiológica , Interfaz Usuario-Computador , Grabación en Video , Niño , Presentación de Datos , Difusión de Innovaciones , Diseño de Equipo , Humanos , Dosis de Radiación
12.
Neuroimage ; 162: 65-72, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28801253

RESUMEN

Preterm birth disrupts and alters the complex developmental processes in the cerebral cortex. This disruption may be a contributing factor to widespread delay and cognitive difficulties in the preterm population. Diffusion-weighted magnetic resonance imaging (DW MRI) is a noninvasive imaging technique that makes inferences about cellular structures, at scales smaller than the imaging resolution. One established finding is that DW MRI shows a transient radial alignment in the preterm cortex. In this study, we quantify this maturational process with the "radiality index", a parameter that measures directional coherence, which we expect to change rapidly in the perinatal period. To measure this index, we used structural T2-weighted MRI to segment the cortex and generate cortical meshes. We obtained normal vectors for each face of the mesh and compared them to the principal diffusion direction, calculated by both the DTI and DIAMOND models, to generate the radiality index. The subjects included in this study were 89 infants born at fewer than 34 weeks completed gestation, each imaged at up to four timepoints between 27 and 42 weeks gestational age. In this manuscript, we quantify the longitudinal trajectory of radiality, fractional anisotropy and mean diffusivity from the DTI and DIAMOND models. For the radiality index and fractional anisotropy, the DIAMOND model offers improved sensitivity over the DTI model. The radiality index has a consistent progression across time, with the rate of change depending on the cortical lobe. The occipital lobe changes most rapidly, and the frontal and temporal least: this is commensurate with known developmental anatomy. Analysing the radiality index offers information complementary to other diffusion parameters.


Asunto(s)
Corteza Cerebral/patología , Recien Nacido Prematuro/crecimiento & desarrollo , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Recién Nacido , Estudios Longitudinales , Masculino
13.
Neuroimage ; 156: 475-488, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28433624

RESUMEN

Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average characteristic path lengths indicative of small-worldness property of the fetal brain network. These findings comply with previous findings in newborns and a recent study on fetuses. The proposed algorithm can provide valuable information from DWI of the fetal brain not available in the assessment of the original 2D slices and may be used to more reliably study the developing fetal brain connectome.


Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Feto/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Vías Nerviosas/diagnóstico por imagen , Embarazo
14.
Hum Brain Mapp ; 38(1): 509-527, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27647682

RESUMEN

Streamline tractography algorithms infer connectivity from diffusion MRI (dMRI) by following diffusion directions which are similarly aligned between neighboring voxels. However, not all white matter (WM) fascicles are organized in this manner. For example, Meyer's loop is a highly curved portion of the optic radiation (OR) that exhibits a narrow turn, kissing and crossing pathways, and changes in fascicle dispersion. From a neurosurgical perspective, damage to Meyer's loop carries a potential risk of inducing vision deficits to the patient, especially during temporal lobe resection surgery. To prevent such impairment, achieving an accurate delineation of Meyer's loop with tractography is thus of utmost importance. However, current algorithms tend to under-estimate the full extent of Meyer's loop, mainly attributed to the aforementioned rule for connectivity which requires a direction to be chosen across a field of orientations. In this article, it was demonstrated that MAGNEtic Tractography (MAGNET) can benefit Meyer's loop delineation by incorporating anatomical knowledge of the expected fiber orientation to overcome local ambiguities. A new ROI-mechanism was proposed which supplies additional information to streamline reconstruction algorithms by the means of oriented priors. Their results showed that MAGNET can accurately generate Meyer's loop in all of our 15 child subjects (8 males; mean age 10.2 years ± 3.1). It effectively improved streamline coverage when compared with deterministic tractography, and significantly reduced the distance between the anterior-most portion of Meyer's loop and the temporal pole by 16.7 mm on average, a crucial landmark used for preoperative planning of temporal lobe surgery. Hum Brain Mapp 38:509-527, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Mapeo Encefálico , Imagen de Difusión Tensora , Cuerpos Geniculados/diagnóstico por imagen , Fibras Nerviosas/fisiología , Vías Visuales/diagnóstico por imagen , Adolescente , Niño , Preescolar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino
15.
NMR Biomed ; 30(9)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28643354

RESUMEN

A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance imaging (MRI). However, model comparison to date focuses only on specific subclasses, e.g. compartment models or signal models, and little or no information is available in the literature on how performance varies among the different types of models. To address this deficiency, we organized the 'White Matter Modeling Challenge' during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This competition aimed to compare a range of different kinds of models in their ability to explain a large range of measurable in vivo DW human brain data. Specifically, we assessed the ability of models to predict the DW signal accurately for new diffusion gradients and b values. We did not evaluate the accuracy of estimated model parameters, as a ground truth is hard to obtain. We used the Connectome scanner at the Massachusetts General Hospital, using gradient strengths of up to 300 mT/m and a broad set of diffusion times. We focused on assessing the DW signal prediction in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and the fornix, where the configuration of fibres is more complex. The challenge participants had access to three-quarters of the dataset and their models were ranked on their ability to predict the remaining unseen quarter of the data. The challenge provided a unique opportunity for a quantitative comparison of diverse methods from multiple groups worldwide. The comparison of the challenge entries reveals interesting trends that could potentially influence the next generation of diffusion-based quantitative MRI techniques. The first is that signal models do not necessarily outperform tissue models; in fact, of those tested, tissue models rank highest on average. The second is that assuming a non-Gaussian (rather than purely Gaussian) noise model provides little improvement in prediction of unseen data, although it is possible that this may still have a beneficial effect on estimated parameter values. The third is that preprocessing the training data, here by omitting signal outliers, and using signal-predicting strategies, such as bootstrapping or cross-validation, could benefit the model fitting. The analysis in this study provides a benchmark for other models and the data remain available to build up a more complete comparison in the future.


Asunto(s)
Encéfalo/fisiología , Conectoma , Imagen de Difusión por Resonancia Magnética/métodos , Modelos Neurológicos , Cuerpo Calloso/fisiología , Fórnix/fisiología , Humanos
16.
Magn Reson Med ; 76(3): 963-77, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26362832

RESUMEN

PURPOSE: To develop a statistical model for the tridimensional diffusion MRI signal at each voxel that describes the signal arising from each tissue compartment in each voxel. THEORY AND METHODS: In prior work, a statistical model of the apparent diffusion coefficient was shown to well-characterize the diffusivity and heterogeneity of the mono-directional diffusion MRI signal. However, this model was unable to characterize the three-dimensional anisotropic diffusion observed in the brain. We introduce a new model that extends the statistical distribution representation to be fully tridimensional, in which apparent diffusion coefficients are extended to be diffusion tensors. The set of compartments present at a voxel is modeled by a finite sum of unimodal continuous distributions of diffusion tensors. Each distribution provides measures of each compartment microstructural diffusivity and heterogeneity. RESULTS: The ability to estimate the tridimensional diffusivity and heterogeneity of multiple fascicles and of free diffusion is demonstrated. CONCLUSION: Our novel tissue model allows for the characterization of the intra-voxel orientational heterogeneity, a prerequisite for accurate tractography while also characterizing the overall tridimensional diffusivity and heterogeneity of each tissue compartment. The model parameters can be estimated from short duration acquisitions. The diffusivity and heterogeneity microstructural parameters may provide novel indicator of the presence of disease or injury. Magn Reson Med 76:963-977, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/citología , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Neurológicos , Modelos Estadísticos , Animales , Anisotropía , Simulación por Computador , Humanos , Imagenología Tridimensional/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Cereb Cortex ; 23(7): 1526-32, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22661408

RESUMEN

The purpose of this study was to examine the relationship between language pathways and autism spectrum disorders (ASDs) in patients with tuberous sclerosis complex (TSC). An advanced diffusion-weighted magnetic resonance imaging (MRI) was performed on 42 patients with TSC and 42 age-matched controls. Using a validated automatic method, white matter language pathways were identified and microstructural characteristics were extracted, including fractional anisotropy (FA) and mean diffusivity (MD). Among 42 patients with TSC, 12 had ASD (29%). After controlling for age, TSC patients without ASD had a lower FA than controls in the arcuate fasciculus (AF); TSC patients with ASD had even a smaller FA, lower than the FA for those without ASD. Similarly, TSC patients without ASD had a greater MD than controls in the AF; TSC patients with ASD had even a higher MD, greater than the MD in those without ASD. It remains unclear why some patients with TSC develop ASD, while others have better language and socio-behavioral outcomes. Our results suggest that language pathway microstructure may serve as a marker of the risk of ASD in TSC patients. Impaired microstructure in language pathways of TSC patients may indicate the development of ASD, although prospective studies of language pathway development and ASD diagnosis in TSC remain essential.


Asunto(s)
Encéfalo/patología , Trastornos Generalizados del Desarrollo Infantil/patología , Fibras Nerviosas Mielínicas/patología , Vías Nerviosas/patología , Esclerosis Tuberosa/patología , Adolescente , Adulto , Anisotropía , Niño , Trastornos Generalizados del Desarrollo Infantil/complicaciones , Preescolar , Imagen de Difusión Tensora , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Lactante , Lenguaje , Trastornos del Lenguaje/patología , Masculino , Esclerosis Tuberosa/complicaciones , Adulto Joven
18.
J Neuroimaging ; 32(6): 1098-1108, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36036739

RESUMEN

BACKGROUND AND PURPOSE: Pediatric-onset multiple sclerosis (POMS) shows earlier axonal involvement and greater axonal loss than in adults. We aim to characterize the white matter (WM) microstructural changes in POMS using a diffusion compartment imaging (DCI) model and compare it to standard diffusion tensor imaging (DTI). METHODS: Eleven patients (2 males, mean age 18.8 ± 3.9 years) with a diagnosis of relapsing and remitting POMS (mean age at disease onset 13.8 ± 2.9 years, mean duration 5.1 ± 1.9 years) and healthy controls (8 males, mean age 26.4 ± 6.5 years) were recruited and imaged at 3 T. A 90-gradient set Cube and Sphere acquisition and a novel DCI model known as DIstribution of Anisotropic MicrOstructural eNvironments with Diffusion-weighted imaging (DIAMOND) were used to calculate a single anisotropic compartment, an isotropic compartment, and a free diffusion compartment. Lesions and contralateral normal-appearing white matter (NAWM) in patients and whole brain WM for controls were labeled. RESULTS: Eleven patients and 11 controls were recruited. When comparing lesions and contralateral NAWM in patients using DCI, compartmental axial diffusivity, radial diffusivity (cRD), and mean diffusivity (cMD) were higher in lesions. Conversely, compartmental fractional anisotropy (cFA) and heterogeneity index were lower in lesions. An analysis of DTI equivalents showed the same trends. In whole-brain NAWM of patients compared to controls, cRD and cMD were higher and cFA was lower in patients. CONCLUSION: Lesions in POMS can be accurately characterized by a DCI model. Incipient changes in NAWM seen in DCI may not be readily observable by DTI.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sustancia Blanca , Adulto , Masculino , Niño , Humanos , Adolescente , Adulto Joven , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Imagen de Difusión Tensora/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Esclerosis Múltiple Recurrente-Remitente/patología , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
19.
Med Image Anal ; 70: 101988, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33611054

RESUMEN

Diffusion tensor imaging provides increased sensitivity to microstructural tissue changes compared to conventional anatomical imaging but also presents limited specificity. To tackle this problem, the DIAMOND model subdivides the voxel content into diffusion compartments and draws from diffusion-weighted data to estimate compartmental non-central matrix-variate Gamma distributions of diffusion tensors. It models each sub-voxel fascicle separately, resolving crossing white-matter pathways and allowing for a fascicle-element (fixel) based analysis of microstructural features. Alternatively, specific features of the intra-voxel diffusion tensor distribution can be selectively measured using tensor-valued diffusion-weighted acquisition schemes. However, the impact of such schemes on estimating brain microstructural features has only been studied in a handful of parametric single-fascicle models. In this work, we derive a general Laplace transform for the non-central matrix-variate Gamma distribution, which enables the extension of DIAMOND to tensor-valued encoded data. We then evaluate this "Magic DIAMOND" model in silico and in vivo on various combinations of tensor-valued encoded data. Assessing uncertainty on parameter estimation via stratified bootstrap, we investigate both voxel-based and fixel-based metrics by carrying out multi-peak tractography. We demonstrate using in silico evaluations that tensor-valued diffusion encoding significantly improves Magic DIAMOND's accuracy. Most importantly, we show in vivo that our estimated metrics can be robustly mapped along tracks across regions of fiber crossing, which opens new perspectives for tractometry and microstructure mapping along specific white-matter tracts.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Simulación por Computador , Diamante , Imagen de Difusión por Resonancia Magnética , Humanos , Sustancia Blanca/diagnóstico por imagen
20.
J Clin Neurophysiol ; 37(1): 79-86, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31261349

RESUMEN

PURPOSE: Electrical source imaging may yield ambiguous results in multilesional epilepsy. The aim of this study was to test the clinical utility of lesion-constrained electrical source imaging in epilepsy surgery in children with tuberous sclerosis complex. METHODS: Lesion-constrained electrical source imaging is a novel method based on a proposed head model in which the source solution is constrained to lesions. Using a goodness of fit analysis, we rank-ordered individual tubers by their ability to approximate interictal and ictal EEG data. The overlap with the surgical resection cavity was determined qualitatively, and placed findings in the context of epilepsy surgical outcome, and compared with the low-resolution brain electromagnetic tomography solution. RESULTS: Low-resolution brain electromagnetic tomography predicted the surgical cavity in only one patient with good outcome (true positive) and localized to outside of the cavity in two patients with a good outcome (false negative). In one patient with a poor outcome, the interictal low-resolution brain electromagnetic tomography solution overlapped with the cavity (false positive). Lesion-constrained electrical source imaging of ictal EEG data identified tubers concordant with the resection zone in three patients with a good surgical outcome (true positive) and appropriately discordant in three other patients with a poor outcome (true negative). CONCLUSIONS: Lesion-constrained electrical source imaging on low-resolution EEG data provides complementary information in the presurgical workup for patients with tuberous sclerosis complex, although further validation is required. In the appropriate clinical context, the yield of source localization on low-resolution EEG data may be increased by reduction of the solution space.


Asunto(s)
Electroencefalografía/métodos , Epilepsia/cirugía , Neuroimagen/métodos , Esclerosis Tuberosa/complicaciones , Adolescente , Niño , Epilepsia/etiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA