Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Synchrotron Radiat ; 25(Pt 6): 1727-1735, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407183

RESUMEN

A new ultralow-temperature setup dedicated to soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) experiments is described. Two experiments, performed on the DEIMOS beamline (SOLEIL synchrotron), demonstrate the outstanding performance of this new platform in terms of the lowest achievable temperature under X-ray irradiation (T = 220 mK), the precision in controlling the temperature during measurements as well as the speed of the cooling-down and warming-up procedures. Moreover, owing to the new design of the setup, the eddy-current power is strongly reduced, allowing fast scanning of the magnetic field in XMCD experiments; these performances lead to a powerful device for X-ray spectroscopies on synchrotron-radiation beamlines facilities.

2.
J Chem Phys ; 139(7): 074708, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23968108

RESUMEN

The dynamics of the soft x-ray induced excited spin state trapping (SOXIESST) effect of Fe(phen)2(NCS)2 (Fe-phen) powder have been investigated by x-ray absorption spectroscopy (XAS) using the total electron yield method, in a wide temperature range. The low-spin (LS) state is excited into the metastable high-spin (HS) state at a rate that depends on the intensity of the x-ray illumination it receives, and both the temperature and the intensity of the x-ray illumination will affect the maximum HS proportion that is reached. We find that the SOXIESST HS spin state transforms back to the LS state at a rate that is similar to that found for the light induced excited spin state trapping (LIESST) effect. We show that it is possible to use the SOXIESST effect in combination with the LIESST effect to investigate the influence of cooperative behavior on the dynamics of both effects. To investigate the impact of molecular cooperativity, we compare our results on Fe-phen with those obtained for Fe{[Me2Pyrz]3BH}2 (Fe-pyrz) powder, which exhibits a similar thermal transition temperature but with a hysteresis. We find that, while the time constant of the dynamic is identical for both molecules, the SOXIESST effect is less efficient at exciting the HS state in Fe-pyrz than in Fe-phen.

3.
Phys Rev Lett ; 107(8): 087203, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21929201

RESUMEN

We report the discovery of 180° electron-spin precession in spin-polarized electron-reflection experiments on Fe films on Ag(001), the largest possible precession angle in a single electron reflection. Both experiments as a function of Fe film thickness and ab initio calculations show that the appearance of this ultimate spin precession depends with utmost sensitivity on the relaxation of the Fe surface layers during growth. Similar spin precession is also predicted for other ferromagnetic films.

4.
Phys Rev Lett ; 105(7): 077201, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20868071

RESUMEN

We have studied the repercussion of the molecular adsorption mechanism on the electronic properties of the interface between model nonmagnetic or magnetic metallic surfaces and metallo-organic phthalocyanines molecules (Pcs). Our intertwined x-ray absorption spectroscopy experiments and computational studies reveal that manganese Pc (MnPc) is physisorbed onto a Cu(001) surface and retains the electronic properties of a free molecule. On the other hand, MnPc is chemisorbed onto Co(001), leading to a dominant direct exchange interaction between the Mn molecular site and the Co substrate. By promoting an interfacial spin-polarized conduction state on the molecule, these interactions reveal an important lever to tailor the spintronic properties of hybrid organic-metallic interfaces.

5.
J Phys Condens Matter ; 28(16): 165001, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-26987969

RESUMEN

Whispering gallery modes, well-known for acoustic and optical waves, have been shown recently for electrons in molecules on surfaces. The existence of such waves opens new possibilities for nanoelectronic devices. Here we propose a simple analytical textbook model which allows the main characteristic features of such electronic waves to be understood. The model is illustrated by two- and three-dimensional experimental situations.

6.
Nat Commun ; 5: 3167, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24452260

RESUMEN

The control of the magnetization of a material with an electric field would make the design and the integration of novel electronic devices possible. This explains the renewed interest in multiferroic materials. Progress in this field is currently hampered by the scarcity of the materials available and the smallness of the magnetoelectric effects. Here we present a proof-of-principle experiment showing that engineering large strains through nanoscale size reduction is an efficient route for increasing magnetoelectric coefficients by orders of magnitude. The archetype magnetoelectric material, Cr2O3, in the form of epitaxial clusters, exhibits an unprecedented 600% change in magnetization magnitude under 1 V. Furthermore, a multiferroic phase, with both magnetic and electric spontaneous polarizations, is found in the clusters, while absent in the bulk.

7.
Rev Sci Instrum ; 85(1): 013106, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24517744

RESUMEN

The DEIMOS (Dichroism Experimental Installation for Magneto-Optical Spectroscopy) beamline was part of the second phase of the beamline development at French Synchrotron SOLEIL (Source Optimisée de Lumière à Energie Intermédiaire du LURE) and opened to users in March 2011. It delivers polarized soft x-rays to perform x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and x-ray linear dichroism in the energy range 350-2500 eV. The beamline has been optimized for stability and reproducibility in terms of photon flux and photon energy. The main end-station consists in a cryo-magnet with 2 split coils providing a 7 T magnetic field along the beam or 2 T perpendicular to the beam with a controllable temperature on the sample from 370 K down to 1.5 K.

8.
Sci Rep ; 3: 1272, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23412079

RESUMEN

Organic semiconductors constitute promising candidates toward large-scale electronic circuits that are entirely spintronics-driven. Toward this goal, tunneling magnetoresistance values above 300% at low temperature suggested the presence of highly spin-polarized device interfaces. However, such spinterfaces have not been observed directly, let alone at room temperature. Thanks to experiments and theory on the model spinterface between phthalocyanine molecules and a Co single crystal surface, we clearly evidence a highly efficient spinterface. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecule's nitrogen π orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanisms in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature.

9.
10.
Phys Rev B Condens Matter ; 45(7): 3834-3837, 1992 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-10001976
11.
Phys Rev Lett ; 95(19): 195901, 2005 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-16383997

RESUMEN

The low-temperature surface diffusion of isolated Cr adatoms on Au(111) has been determined using nonperturbing x rays. Changes in the x-ray magnetic circular dichroism spectral line shape together with Monte Carlo calculations demonstrate that adatom nucleation proceeds via quantum tunneling diffusion rather than over-barrier hopping for temperatures <40K. The jump rates are shown to be as much as 35 orders of magnitude higher than that expected for thermal over-barrier hopping at 10 K.

12.
Phys Rev Lett ; 95(15): 157204, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16241757

RESUMEN

We report on the magnetic properties of two-dimensional Co nanoparticles arranged in macroscopically phase-coherent superlattices created by self-assembly on Au(788). Our particles have a density of 26 Tera/in2 (1 Tera=10(12)), are monodomain, and have uniaxial out-of-plane anisotropy. The distribution of the magnetic anisotropy energies has a half width at half maximum of 17%, a factor of 2 more narrow than the best results reported for superlattices of three-dimensional nanoparticles. Our data show the absence of magnetic interactions between the particles. Co/Au(788) thus constitutes an ideal model system to explore the ultimate density limit of magnetic recording.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA