Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemphyschem ; 24(11): e202300061, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36815408

RESUMEN

Carbon 1s core-hole excitation of the molecular anion C2 - has been experimentally studied at high resolution by employing the photon-ion merged-beams technique at a synchrotron light source. The experimental cross section for photo-double-detachment shows a pronounced vibrational structure associated with 1 σ u → 3 σ g ${1\sigma _u \to 3\sigma _g }$ and 1 σ g → 1 π u ${1\sigma _g \to 1\pi _u }$ core excitations of the C2 - ground level and first excited level, respectively. A detailed Franck-Condon analysis reveals a strong contraction of the C2 - molecular anion by 0.2 Šupon this core photoexcitation. The associated change of the molecule's moment of inertia leads to a noticeable rotational broadening of the observed vibrational spectral features. This broadening is accounted for in the present analysis which provides the spectroscopic parameters of the C2 - 1 σ u - 1 3 σ g 2 2 Σ u + ${1\sigma _u^{ - 1} \,3\sigma _g^2 \;^2 \Sigma _u^ + }$ and 1 σ g - 1 3 σ g 2 2 Σ g + ${1\sigma _g^{ - 1} \,3\sigma _g^2 \;^2 \Sigma _g^ + }$ core-excited levels.

2.
Phys Rev Lett ; 124(8): 083203, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167340

RESUMEN

We report on new measurements of m-fold photodetachment (m=2-5) of carbon anions via K-shell excitation and ionization. The experiments were carried out employing the photon-ion merged-beams technique at a synchrotron light source. While previous measurements were restricted to double detachment (m=2) and to just the lowest-energy K-shell resonance at about 282 eV, our absolute experimental m-fold detachment cross sections at photon energies of up to 1000 eV exhibit a wealth of new thresholds and resonances. We tentatively identify these features with the aid of detailed atomic-structure calculations. In particular, we find unambiguous evidence for fivefold detachment via double K-hole production.

3.
Phys Rev Lett ; 120(13): 133202, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694177

RESUMEN

Double and triple detachment of the F^{-}(1s^{2}2s^{2}2p^{6}) negative ion by a single photon have been investigated in the photon energy range 660 to 1000 eV. The experimental data provide unambiguous evidence for the dominant role of direct photodouble detachment with a subsequent single-Auger process in the reaction channel leading to F^{2+} product ions. Absolute cross sections were determined for the direct removal of a (1s+2p) pair of electrons from F^{-} by the absorption of a single photon.

4.
Nature ; 492(7428): 225-8, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23235875

RESUMEN

Highly charged iron (Fe(16+), here referred to as Fe XVII) produces some of the brightest X-ray emission lines from hot astrophysical objects, including galaxy clusters and stellar coronae, and it dominates the emission of the Sun at wavelengths near 15 ångströms. The Fe XVII spectrum is, however, poorly fitted by even the best astrophysical models. A particular problem has been that the intensity of the strongest Fe XVII line is generally weaker than predicted. This has affected the interpretation of observations by the Chandra and XMM-Newton orbiting X-ray missions, fuelling a continuing controversy over whether this discrepancy is caused by incomplete modelling of the plasma environment in these objects or by shortcomings in the treatment of the underlying atomic physics. Here we report the results of an experiment in which a target of iron ions was induced to fluoresce by subjecting it to femtosecond X-ray pulses from a free-electron laser; our aim was to isolate a key aspect of the quantum mechanical description of the line emission. Surprisingly, we find a relative oscillator strength that is unexpectedly low, differing by 3.6σ from the best quantum mechanical calculations. Our measurements suggest that the poor agreement is rooted in the quality of the underlying atomic wavefunctions rather than in insufficient modelling of collisional processes.

5.
Phys Rev Lett ; 114(1): 013002, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615465

RESUMEN

Single, double, and triple ionization of C(1+) ions by single photons is investigated in the energy range of 286-326 eV, i.e., in the range from the lowest-energy K-vacancy resonances to well beyond the K-shell ionization threshold. Clear signatures of C(1+)(1s2s(2)2p(2) (2)D,(2)P) resonances are found in the triple-ionization channel. The only possible mechanism producing C(4+)(1s(2)) via these resonances is direct triple-Auger decay, i.e., a four-electron process with simultaneous emission of three electrons.

6.
Phys Rev Lett ; 111(4): 043003, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23931363

RESUMEN

We have obtained experimental photo-double- and photo-triple-detachment cross sections for the fullerene negative ion using Advanced Light Source photons of 17-90 eV. The cross sections are 2 and 2.5 times larger than those for C60 and appear to be compressed and shifted in photon energy as compared to C60. Our analysis reveals that the additional electron in C60- primarily produces screening which is responsible for the modification of the spectrum. Both screening effects, the shift and the compression, can be quantitatively accounted for by a linear transformation of the energy axis. Applying the transformation allows us to map the neutral and negative ion cross sections onto each other, pointing out the close relationship of correlated few-electron dynamics in neutral and negatively charged extended systems. In contrast, dynamics of neutral and negatively charged atoms or small molecules are typically not closely related.

7.
Rev Sci Instrum ; 94(2): 023201, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859035

RESUMEN

We have added a multipole ion trap to the existing photon-ion spectrometer at PETRA III (PIPE). Its hybrid structure combines a ring-electrode trap with a segmented 16-pole trap. The interaction of gases and ions with extreme ultraviolet radiation from the beamline P04 is planned to be investigated with the newly installed multipole trap. The research focus lies on radiation-induced chemical reactions that take place in the interstellar medium or in the atmospheres of planets, including natural as well as man-made processes that are important in the Earth's atmosphere. In order to determine the mass-to-charge ratio of the stored ions as efficiently as possible, we are using an ion time-of-flight spectrometer. With this technique, all stored ions can be detected simultaneously. To demonstrate the possibilities of the trap setup, two experiments have been carried out: The photoionization of xenon and the ion-impact ionization of norbornadiene. This type of ion-impact ionization can, in principle, also take place in planetary atmospheres. In addition to ionization by photon or ion impact, chemical reactions of the trapped ions with neutral atoms or molecules in the gas phase have been observed. The operation of the trap enables us to simulate conditions similar to those in the ionosphere.

8.
J Chem Phys ; 134(2): 024314, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21241106

RESUMEN

Until now, photodissociation studies on free complex protonated peptides were limited to the UV wavelength range accessible by intense lasers. We have studied photodissociation of gas-phase protonated leucine-enkephalin cations for vacuum ultraviolet (VUV) photons energies ranging from 8 to 40 eV. We report time-of-flight mass spectra of the photofragments and various photofragment-yields as a function of photon energy. For sub-ionization energies our results are in line with existing studies on UV photodissociation of leucine-enkephalin. For photon energies exceeding 10 eV we could identify a new dissociation scheme in which photoabsorption leads to a fast loss of the tyrosine side chain. This loss process leads to the formation of a residual peptide that is remarkably cold internally.


Asunto(s)
Encefalinas/química , Leucina/química , Protones , Rayos Ultravioleta , Procesos Fotoquímicos , Teoría Cuántica
9.
J Phys Chem Lett ; 12(5): 1390-1395, 2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33508188

RESUMEN

The F 1s core level photoionization of the ionic molecular radical HF+ has been studied using the photon-ion merged-beams technique at a synchrotron radiation source. Upon analyzing kinetic energy release (KER) dependent photoion yield spectra, complex ultrafast dissociation dynamics of the F 1s core hole excited σ* state can be revealed. By means of configuration-interaction electronic structure calculations of the excited molecular potential energy curves, this complex process can be attributed to a spin-dependent dissociation of the excited σ* biradical state.

10.
Phys Rev Lett ; 105(21): 213001, 2010 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-21231297

RESUMEN

Experimental evidence is presented for confinement resonances associated with photoabsorption by a Xe atom in a C60 cage. The giant 4d resonance in photoionization of Xe is predicted to be redistributed into four components due to multipath interference of photoelectron waves reflected by the cage. The measurements were made in the photon energy range 60-150 eV by merging a beam of synchrotron radiation with a mass/charge selected Xe@C60+ ion beam. The phenomenon was observed in the Xe@C(58)(3+) product ion channel. [corrected]

11.
Rev Sci Instrum ; 91(6): 061101, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611046

RESUMEN

The transition from old space to new space along with increasing commercialization has a major impact on space flight, in general, and on electric propulsion (EP) by ion thrusters, in particular. Ion thrusters are nowadays used as primary propulsion systems in space. This article describes how these changes related to new space affect various aspects that are important for the development of EP systems. Starting with a historical overview of the development of space flight and of the technology of EP systems, a number of important missions with EP and the underlying technologies are presented. The focus of our discussion is the technology of the radio frequency ion thruster as a prominent member of the gridded ion engine family. Based on this discussion, we give an overview of important research topics such as the search for alternative propellants, the development of reliable neutralizer concepts based on novel insert materials, as well as promising neutralizer-free propulsion concepts. In addition, aspects of thruster modeling and requirements for test facilities are discussed. Furthermore, we address aspects of space electronics with regard to the development of highly efficient electronic components as well as aspects of electromagnetic compatibility and radiation hardness. This article concludes with a presentation of the interaction of EP systems with the spacecraft.

12.
Rev Sci Instrum ; 87(6): 063115, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27370434

RESUMEN

An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

13.
Phys Rev Lett ; 84(21): 4822-5, 2000 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-10990807

RESUMEN

Radiative recombination (inverse photoionization) is believed to be well understood since the beginning of quantum mechanics. Still, modern experiments consistently reveal excess recombination rates at very low electron-ion center-of-mass energies. In a detailed study on recombination of F6+ and C6+ ions with magnetically guided electrons we explored the yet unexplained rate enhancement, its dependence on the magnetic field B, the electron density n(e), and the beam temperatures T( perpendicular) and T( ||). The excess scales as T(-1/2)( perpendicular) and, surprisingly, as T(-1/2)( ||), increases strongly with B, and is insensitive to n(e). This puts strong constraints on explanations of the enhancement.

16.
18.
Phys Rev Lett ; 101(13): 133001, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18851442

RESUMEN

Mass-selected beams of atomic Ceq+ ions (q = 2, 3, 4), of C82+ and of endohedral Ce@C82+ ions were employed to study photoionization of free and encaged cerium atoms. The Ce 4d inner-shell contributions to single and double ionization of the endohedral Ce@C82+ fullerene have been extracted from the data and compared with expectations based on theory and the experiments with atomic Ce ions. Dramatic reduction and redistribution of the ionization contributions to 4d photoabsorption is observed. More than half of the Ce 4d oscillator strength appears to be diverted to the additional decay channels opened by the fullerene cage surrounding the Ce atom.

19.
Phys Rev Lett ; 100(3): 033001, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18232975

RESUMEN

Term energies for dielectronic-recombination Rydberg resonances below 0.07 eV are determined for Sc18+ with absolute accuracies below 0.0002 eV by electron collision spectroscopy in an ion storage ring, using the twin-electron-beam technique and a cryogenic photocathode. The lithiumlike 2s_{1/2}-2p_{3/2} transition energy for Z=21 is determined to 4.6 ppm, less than 1% of the few-body effects on radiative corrections. Features from the hyperfine structure of the 2s state could be resolved in the dielectronic-recombination spectrum.

20.
Phys Rev Lett ; 100(7): 073201, 2008 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-18352547

RESUMEN

Isotope shifts in dielectronic recombination spectra were studied for Li-like (A)Nd(57+) ions with A=142 and A=150. From the displacement of resonance positions energy shifts deltaE(142 150)(2s-2p(1/2))=40.2(3)(6) meV [(stat)(sys)] and deltaE(142 150)(2s-2p(3/2))=42.3(12)(20) meV of 2s-2p(j) transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of (142 150)deltar(2)=-1.36(1)(3) fm(2). The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA