Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 162(1): 96-107, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140593

RESUMEN

Argonaute proteins play a central role in mediating post-transcriptional gene regulation by microRNAs (miRNAs). Argonautes use the nucleotide sequences in miRNAs as guides for identifying target messenger RNAs for repression. Here, we used single-molecule FRET to directly visualize how human Argonaute-2 (Ago2) searches for and identifies target sites in RNAs complementary to its miRNA guide. Our results suggest that Ago2 initially scans for target sites with complementarity to nucleotides 2-4 of the miRNA. This initial transient interaction propagates into a stable association when target complementarity extends to nucleotides 2-8. This stepwise recognition process is coupled to lateral diffusion of Ago2 along the target RNA, which promotes the target search by enhancing the retention of Ago2 on the RNA. The combined results reveal the mechanisms that Argonaute likely uses to efficiently identify miRNA target sites within the vast and dynamic agglomeration of RNA molecules in the living cell.


Asunto(s)
Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Animales , Proteínas Argonautas/química , Sitios de Unión , Difusión , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Modelos Biológicos , Termodinámica
2.
EMBO J ; 37(1): 75-88, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-28939659

RESUMEN

Argonaute proteins use microRNAs (miRNAs) to identify mRNAs targeted for post-transcriptional repression. Biochemical assays have demonstrated that Argonaute functions by modulating the binding properties of its miRNA guide so that pairing to the seed region is exquisitely fast and accurate. However, the mechanisms used by Argonaute to reshape the binding properties of its small RNA guide remain poorly understood. Here, we identify a structural element, α-helix-7, in human Argonaute2 (Ago2) that is required for speed and fidelity in binding target RNAs. Biochemical, structural, and single-molecule data indicate that helix-7 acts as a molecular wedge that pivots to enforce rapid making and breaking of miRNA:target base pairs in the 3' half of the seed region. These activities allow Ago2 to rapidly dismiss off-targets and dynamically search for seed-matched sites at a rate approaching the limit of diffusion.


Asunto(s)
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Modelos Biológicos , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/metabolismo , Proteínas Argonautas/genética , Cristalografía por Rayos X , Humanos , MicroARNs/genética , Unión Proteica , Conformación Proteica , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética
3.
J Am Chem Soc ; 138(28): 8694-7, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27380263

RESUMEN

Incorporation of chemical modifications into small interfering RNAs (siRNAs) increases their metabolic stability and improves their tissue distribution. However, how these modifications impact interactions with Argonaute-2 (Ago2), the molecular target of siRNAs, is not known. Herein we present the crystal structure of human Ago2 bound to a metabolically stable siRNA containing extensive backbone modifications. Comparison to the structure of an equivalent unmodified-siRNA complex indicates that the structure of Ago2 is relatively unaffected by chemical modifications in the bound siRNA. In contrast, the modified siRNA appears to be much more plastic and shifts, relative to the unmodified siRNA, to optimize contacts with Ago2. Structure-activity analysis reveals that even major conformational perturbations in the 3' half of the siRNA seed region have a relatively modest effect on knockdown potency. These findings provide an explanation for a variety of modification patterns tolerated in siRNAs and a structural basis for advancing therapeutic siRNA design.


Asunto(s)
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Cristalografía por Rayos X , Humanos , Unión Proteica , Interferencia de ARN
4.
J Am Chem Soc ; 138(28): 8667-9, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27387838

RESUMEN

Short interfering RNAs (siRNAs) are promising therapeutics that make use of the RNA interference (RNAi) pathway, but liabilities arising from the native RNA structure necessitate chemical modification for drug development. Advances in the structural characterization of components of the human RNAi pathway have enabled structure-guided optimization of siRNA properties. Here we report the 2.3 Å resolution crystal structure of human Argonaute 2 (hAgo2), a key nuclease in the RNAi pathway, bound to an siRNA guide strand bearing an unnatural triazolyl nucleotide at position 1 (g1). Unlike natural nucleotides, this analogue inserts deeply into hAgo2's central RNA binding cleft and thus is able to modulate pairing between guide and target RNAs. The affinity of the hAgo2-siRNA complex for a seed-only matched target was significantly reduced by the triazolyl modification, while the affinity for a fully matched target was unchanged. In addition, siRNA potency for off-target repression was reduced (4-fold increase in IC50) by the modification, while on-target knockdown was improved (2-fold reduction in IC50). Controlling siRNA on-target versus microRNA (miRNA)-like off-target potency by projection of substituent groups into the hAgo2 central cleft from g1 is a new approach to enhance siRNA selectivity with a strong structural rationale.


Asunto(s)
ARN Interferente Pequeño/genética , Proteínas Argonautas/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/deficiencia , Fosfatidilinositol 3-Quinasa Clase I/genética , Humanos , Nucleótidos/química , Interferencia de ARN , ARN Interferente Pequeño/química , Triazoles/química
5.
Proc Natl Acad Sci U S A ; 107(48): 20715-9, 2010 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-21068368

RESUMEN

Editing of the pre-mRNA for the DNA repair enzyme NEIL1 causes a lysine to arginine change in the lesion recognition loop of the protein. The two forms of NEIL1 are shown here to have distinct enzymatic properties. The edited form removes thymine glycol from duplex DNA 30 times more slowly than the form encoded in the genome, whereas editing enhances repair of the guanidinohydantoin lesion by NEIL1. In addition, we show that the NEIL1 recoding site is a preferred editing site for the RNA editing adenosine deaminase ADAR1. The edited adenosine resides in an A-C mismatch in a hairpin stem formed by pairing of exon 6 to the immediate upstream intron 5 sequence. As expected for an ADAR1 site, editing at this position is increased in human cells treated with interferon α. These results suggest a unique regulatory mechanism for DNA repair and extend our understanding of the impact of RNA editing.


Asunto(s)
Daño del ADN/genética , ADN Glicosilasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Edición de ARN/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Secuencia de Bases , Línea Celular Tumoral , ADN Glicosilasas/química , Enzimas Reparadoras del ADN/química , Humanos , Interferón-alfa/farmacología , Cinética , Datos de Secuencia Molecular , Mutación/genética , Conformación de Ácido Nucleico/efectos de los fármacos , Edición de ARN/efectos de los fármacos , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , Especificidad por Sustrato/efectos de los fármacos
6.
Org Biomol Chem ; 8(21): 4898-904, 2010 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-20820662

RESUMEN

RNA editing by adenosine deamination is a form of epigenetic control of gene expression wherein the ADAR enzymes convert adenosine to inosine in RNA often changing the meaning of codons. The pre-mRNA for the 2c subtype of serotonin receptor (5-HT2cR) is shown here to support small molecule binding near known editing sites. Furthermore, a helix-threading peptide binds this site and inhibits the in vitro reaction of ADAR2 in an RNA-substrate selective manner. This is the first example of substrate-selective inhibition of editing by an RNA-binding small molecule and sets the stage for the development of new reagents capable of controlling gene function through manipulation of mRNA editing.


Asunto(s)
Inhibidores de la Adenosina Desaminasa/farmacología , Adenosina Desaminasa/metabolismo , Péptidos/farmacología , Edición de ARN/efectos de los fármacos , Precursores del ARN/metabolismo , Receptor de Serotonina 5-HT2C/genética , Inhibidores de la Adenosina Desaminasa/química , Secuencia de Bases , Sitios de Unión , Humanos , Datos de Secuencia Molecular , Péptidos/química , Precursores del ARN/química , Precursores del ARN/genética , Proteínas de Unión al ARN
7.
FEBS Open Bio ; 9(6): 1042-1051, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31021526

RESUMEN

Viral suppressors of RNA silencing (VSRSs) are a diverse group of viral proteins that have evolved to disrupt eukaryotic RNA silencing pathways, thereby contributing to viral pathogenicity. The p19 protein is a VSRS that selectively binds to short interfering RNAs (siRNAs) over microRNAs (miRNAs). Mutational analysis has identified single amino acid substitutions that reverse this selectivity through new high-affinity interactions with human miR-122. Herein, we report crystal structures of complexed p19-T111S (2.6 Å), p19-T111H (2.3 Å) and wild-type p19 protein (2.2 Å) from the Carnation Italian ringspot virus with small interfering RNA (siRNA) ligands. Structural comparisons reveal that these mutations do not lead to major changes in p19 architecture, but instead promote subtle rearrangement of residues and solvent molecules along the p19 midline. These observations suggest p19 uses many small interactions to distinguish siRNAs from miRNAs and perturbing these interactions can create p19 variants with novel RNA-recognition properties. DATABASE: Model data are deposited in the PDB database under the accession numbers 6BJG, 6BJH and 6BJV.


Asunto(s)
Proteínas Mutantes/química , Interferencia de ARN , ARN Interferente Pequeño/química , Tombusvirus , Proteínas del Núcleo Viral/química , Sitios de Unión/genética , Células Cultivadas , Cristalización , Cristalografía por Rayos X , Escherichia coli/citología , Humanos , Enlace de Hidrógeno , MicroARNs/química , Mutación Puntual , Unión Proteica , Ingeniería de Proteínas/métodos , Estructura Secundaria de Proteína , ARN Bicatenario , Proteínas del Núcleo Viral/genética
8.
Bioorg Med Chem ; 16(19): 8914-21, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18789700

RESUMEN

The fluorescent intercalator displacement assay using thiazole orange has been adapted to the study of RNA-binding helix-threading peptides (HTPs). This assay is highly sensitive with HTP-binding RNAs and provides binding affinity data in good agreement with quantitative ribonuclease footprinting without the need for radiolabeling or gel electrophoresis. The FID assay was used to define structure activity relationships for a small library of helix-threading peptides. Results of these studies indicate their RNA binding is dependent on peptide sequence, alpha-amino acid stereochemistry, and cyclization (vs linear peptides), but independent of macrocyclic ring size for the penta-, tetra- and tri-peptides analyzed.


Asunto(s)
Benzotiazoles/química , Bioensayo/métodos , Colorantes Fluorescentes/química , Sustancias Intercalantes/química , Péptidos/metabolismo , Quinolinas/química , ARN/metabolismo , Sitios de Unión , Ciclización , Electroforesis/métodos , Marcaje Isotópico , Péptidos/química , Estructura Secundaria de Proteína , ARN/química , Relación Estructura-Actividad
9.
Elife ; 42015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26359634

RESUMEN

MicroRNAs (miRNAs) direct post-transcriptional regulation of human genes by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. An enigmatic feature of many conserved mammalian miRNA target sites is that an adenosine (A) nucleotide opposite miRNA nucleotide-1 confers enhanced target repression independently of base pairing potential to the miRNA. In this study, we show that human Argonaute2 (Ago2) possesses a solvated surface pocket that specifically binds adenine nucleobases in the 1 position (t1) of target RNAs. t1A nucleotides are recognized indirectly through a hydrogen-bonding network of water molecules that preferentially interacts with the N6 amine on adenine. t1A nucleotides are not utilized during the initial binding of Ago2 to its target, but instead function by increasing the dwell time on target RNA. We also show that N6 adenosine methylation blocks t1A recognition, revealing a possible mechanism for modulation of miRNA target site potency.


Asunto(s)
Adenosina/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , MicroARNs/metabolismo , Agua/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
10.
Science ; 346(6209): 608-13, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25359968

RESUMEN

MicroRNAs (miRNAs) control expression of thousands of genes in plants and animals. miRNAs function by guiding Argonaute proteins to complementary sites in messenger RNAs (mRNAs) targeted for repression. We determined crystal structures of human Argonaute-2 (Ago2) bound to a defined guide RNA with and without target RNAs representing miRNA recognition sites. These structures suggest a stepwise mechanism, in which Ago2 primarily exposes guide nucleotides (nt) 2 to 5 for initial target pairing. Pairing to nt 2 to 5 promotes conformational changes that expose nt 2 to 8 and 13 to 16 for further target recognition. Interactions with the guide-target minor groove allow Ago2 to interrogate target RNAs in a sequence-independent manner, whereas an adenosine binding-pocket opposite guide nt 1 further facilitates target recognition. Spurious slicing of miRNA targets is avoided through an inhibitory coordination of one catalytic magnesium ion. These results explain the conserved nucleotide-pairing patterns in animal miRNA target sites first observed over two decades ago.


Asunto(s)
Proteínas Argonautas/química , Regulación de la Expresión Génica , MicroARNs/química , Proteínas Argonautas/genética , Secuencia de Bases , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Magnesio/química , MicroARNs/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Secundaria de Proteína , ARN Pequeño no Traducido
11.
ACS Chem Biol ; 8(4): 832-9, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23394403

RESUMEN

ADARs (adenosine deaminases acting on RNA) are RNA editing enzymes that bind double helical RNAs and deaminate select adenosines (A). The product inosine (I) is read during translation as guanosine (G), so such changes can alter codon meaning. ADAR-catalyzed A to I changes occur in coding sequences for several proteins of importance to the nervous system. However, these sites constitute only a very small fraction of known A to I sites in the human transcriptome, and the significance of editing at the vast majority sites is unknown at this time. Site-selective inhibitors of RNA editing are needed to advance our understanding of the function of editing at specific sites. Here we show that 2'-O-methyl/locked nucleic acid (LNA) mixmer antisense oligonucleotides are potent and selective inhibitors of RNA editing on two different target RNAs. These reagents are capable of binding with high affinity to RNA editing substrates and remodeling the secondary structure by a strand-invasion mechanism. The potency observed here for 2'-O-methyl/LNA mixmers suggests this backbone structure is superior to the morpholino backbone structure for inhibition of RNA editing. Finally, we demonstrate antisense inhibition of editing of the mRNA for the DNA repair glycosylase NEIL1 in cultured human cells, providing a new approach to exploring the link between RNA editing and the cellular response to oxidative DNA damage.


Asunto(s)
Ácidos Nucleicos/química , Edición de ARN/efectos de los fármacos , ARN sin Sentido/farmacología , Secuencia de Bases , Células HeLa , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Mensajero/química
12.
Science ; 336(6084): 1037-40, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22539551

RESUMEN

Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.


Asunto(s)
Proteínas Argonautas/química , Secuencia de Aminoácidos , Proteínas Argonautas/metabolismo , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , MicroARNs/química , MicroARNs/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Triptófano/química , ARN Pequeño no Traducido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA