Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nano Lett ; 24(17): 5174-5181, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587459

RESUMEN

Characteristic properties of secondary electrons emitted from irradiated two-dimensional materials arise from multi-length and multi-time-scale relaxation processes that connect the initial nonequilibrium excited electron distribution with their eventual emission. To understand these processes, which are critical for using secondary electrons as high-resolution thermalization probes, we combine first-principles real-time electron dynamics with irradiation experiments. Our data for cold and hot proton-irradiated graphene show signatures of kinetic and potential emission and generally good agreement for electron yields between experiment and theory. The duration of the emission pulse is about 1.5 fs, which indicates high time resolution when used as a probe. Our newly developed method to predict kinetic energy spectra shows good agreement with electron and ion irradiation experiments and prior models. We find that the lattice temperature significantly increases secondary electron emission, whereas electron temperature has a negligible effect.

2.
Nano Lett ; 22(12): 4941-4948, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35687040

RESUMEN

Angstrom-confined solvents in 2D laminates can travel through interlayer spacings, through gaps between adjacent sheets, and via in-plane pores. Among these, experimental access to investigate the mass transport through in-plane pores is lacking. Our experiments allow an understanding of this mass transport via the controlled variation of oxygen functionalities, size and density of in-plane pores in graphene oxide membranes. Contrary to expectations, our transport experiments show that higher in-plane pore densities may not necessarily lead to higher water permeability. We observed that membranes with a high in-plane pore density but a low amount of oxygen functionalities exhibit a complete blockage of water. However, when water-ethanol mixtures with a weaker hydrogen network are used, these membranes show an enhanced permeation. Our combined experimental and computational results suggest that the transport mechanism is governed by the attraction of the solvents toward the pores with functional groups and hindered by the strong hydrogen network of water formed under angstrom confinement.

3.
Chemistry ; 28(6): e202103853, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34939670

RESUMEN

Bistable spin-crossover (SCO) complexes that undergo abrupt and hysteretic (ΔT1/2 ) spin-state switching are desirable for molecule-based switching and memory applications. In this study, we report on structural facets governing hysteretic SCO in a set of iron(II)-2,6-bis(1H-pyrazol-1-yl)pyridine) (bpp) complexes - [Fe(bpp-COOEt)2 ](X)2 ⋅CH3 NO2 (X=ClO4 , 1; X=BF4 , 2). Stable spin-state switching - T1/2 =288 K; ΔT1/2 =62 K - is observed for 1, whereas 2 undergoes above-room-temperature lattice-solvent content-dependent SCO - T1/2 =331 K; ΔT1/2 =43 K. Variable-temperature single-crystal X-ray diffraction studies of the complexes revealed pronounced molecular reorganizations - from the Jahn-Teller-distorted HS state to the less distorted LS state - and conformation switching of the ethyl group of the COOEt substituent upon SCO. Consequently, we propose that the large structural reorganizations rendered SCO hysteretic in 1 and 2. Such insights shedding light on the molecular origin of thermal hysteresis might enable the design of technologically relevant molecule-based switching and memory elements.

4.
Nanotechnology ; 32(20): 205702, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33477119

RESUMEN

During the last decade graphene-enhanced Raman spectroscopy has proven to be a powerful tool to detect and analyze minute amounts of molecules adsorbed on graphene. By using a graphene-based field-effect device the unique opportunity arises to gain a deeper insight into the coupling of molecules and graphene as graphene's Fermi level can be controlled by the transistor`s gate voltage. However, the fabrication of such a device comes with great challenges because of contaminations stemming from processing the device inevitably prevent direct adsorption of the molecules onto graphene rendering it unsuitable for field-effect controlled graphene-enhanced Raman spectroscopy measurements/experiments. In this work, we solve this problem by establishing two different fabrication procedures for such devices, both of which are in addition compatible with large area and scalable production requirements. As a first solution, selective argon cluster irradiation is shown to be an efficient way to remove resist residues after processing. We provide evidence that after the irradiation the enhancement of the molecular Raman signal can indeed be measured, demonstrating that this procedure cleans graphene's surface sufficiently enough for direct molecular adsorption. As a second solution, we have developed a novel stacking method to encapsulate the molecules in between two graphene layers to protect the underlying graphene and molecular layer from the harsh conditions during the photolithography process. This method combines the advantages of dry stacking, which leads to a perfectly clean interface, and wet stacking processes, which can easily be scaled up for large area processing. Both approaches yield working graphene transistors with strong molecular Raman signals stemming from cobalt octaehtylporphyrin, a promising and prototypical candidate for spintronic applications, and are therefore suitable for graphene based molecular sensing applications.

5.
Langmuir ; 36(26): 7400-7407, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32498516

RESUMEN

Nanoporous graphene displays salt-dependent ion permeation. In this work, we investigate the differences in Donnan potentials arising between reservoirs, separated by a perforated graphene membrane, containing different cations. We compare the case of monovalent cations interacting with nanoporous graphene with the case of bivalent cations. This is accomplished through both measurements of membrane potential arising between two salt reservoirs at different concentrations involving a single cation (ionic potential) and between two reservoirs containing different cations at the same concentration (bi-ionic potential). In our present study, Donnan dialysis experiments involve bivalent MgCl2, CaCl2, and CuCl2 as well as monovalent KCl and NH4Cl salts. For all salts, except CuCl2, clear Donnan and diffusion potential plateaus were observed at low and high salt concentrations, respectively. Our observations show that the membrane potential scaled to the Nernst potential for bivalent cations has a lower value (≈50%) than for monovalent cations (≈72%) in the Donnan exclusion regime. This is likely due to the adsorption of these bivalent cations on monolayer graphene. For bivalent cations, the diffusion regime is reached at a lower ionic strength compared to the monovalent cations. For Mg2+ and Ca2+, the membrane potential does not seem to depend upon the type of ions in the entire ionic strength range. A similar behavior is observed for the KCl and NH4Cl membrane potential curves. For CuCl2, the membrane potential curve is shifted toward lower ionic strength compared to the other two bivalent salts and the Donnan plateau is not observed at the lowest ionic strength. Bi-ionic potential measurements give further insight into the strength of specific interactions, allowing for the estimation of the relative ionic selectivities of different cations based on comparing their bi-ionic potentials. This effect of possible ion adsorption on graphene can be removed through ion exchange with monovalent salts.

6.
Nanotechnology ; 31(50): 505604, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33021241

RESUMEN

Innovative applications based on two-dimensional solids require cost-effective fabrication processes resulting in large areas of high quality materials. Chemical vapour deposition is among the most promising methods to fulfill these requirements. However, for 2D materials prepared in this way it is generally assumed that they are of inferior quality in comparison to the exfoliated 2D materials commonly used in basic research. In this work we challenge this assumption and aim to quantify the differences in quality for the prototypical transition metal dichalcogenide MoS2. To this end single layers of MoS2 prepared by different techniques (exfoliation, grown by different chemical vapour deposition methods, transfer techniques and as vertical heterostructure with graphene) are studied by Raman and photoluminescence spectroscopy, complemented by atomic force microscopy. We demonstrate that as-prepared MoS2, directly grown on SiO2, differs from exfoliated MoS2 in terms of higher photoluminescence, lower electron concentration and increased strain. As soon as a water film is intercalated (e.g. by transfer) underneath the grown MoS2, in particular the (opto)electronic properties become practically identical to those of exfoliated MoS2. A comparison of the two most common precursors shows that the growth with MoO3 causes greater strain and/or defect density deviations than growth with ammonium heptamolybdate. As part of a heterostructure directly grown MoS2 interacts much stronger with the substrate and in this case an intercalated water film does not lead to the complete decoupling, which is typical for exfoliation or transfer. Our work shows that the supposedly poorer quality of grown 2D transition metal dichalcogenides is indeed a misconception.

7.
Phys Chem Chem Phys ; 22(39): 22609-22616, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33000841

RESUMEN

Controlled heating experiments in an inert environment have been performed on WS2 monolayers, in order to clarify the conflicting reports on the high-temperature photoluminescent response of 2D TMDs. We find that in contrast to some previous results on both WS2 and MoS2, the photoluminescent intensity shows a consistent reduction above room temperature. This is accompanied by an almost linear redshift of the peak maximum, and a nearly linear increase in the peak width, which is attributed to an enhanced interaction with optical phonons. Moreover, by fitting the photoluminescence integral intensity with an Arrhenius type dependence, we demonstrate that the center of the WS2 monolayer flake starts to undergo irreversible degradation at a temperature of 573 K in an inert environment. Regions close to flake edges in contrast, with a more intense room temperature PL response, remain stable. The macroscopic PL signal is largely recovered in these regions following subsequent cooling to room temperature.

8.
Phys Rev Lett ; 119(10): 103401, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28949190

RESUMEN

The impact of a highly charged ion onto a solid gives rise to charge exchange between the ion and target atoms, so that a slow ion gets neutralized in the vicinity of the surface. Using highly charged Ar and Xe ions and the surface-only material graphene as a target, we show that the neutralization and deexcitation of the ions proceeds on a sub-10 fs time scale. We further demonstrate that a multiple Interatomic Coulombic Decay (ICD) model can describe the observed ultrafast deexcitation. Other deexcitation mechanisms involving nonradiative decay and quasimolecular orbital formation during the impact are not important, as follows from the comparison of our experimental data with the results of first-principles calculations. Our method also enables the estimation of ICD rates directly.

9.
Nanotechnology ; 28(21): 214002, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28471746

RESUMEN

We study electrical transport properties in exfoliated molybdenum disulfide (MoS2) back-gated field effect transistors at low drain bias and under different illumination intensities. It is found that photoconductive and photogating effect as well as space charge limited conduction can simultaneously occur. We point out that the photoconductivity increases logarithmically with the light intensity and can persist with a decay time longer than 104 s, due to photo-charge trapping at the MoS2/SiO2 interface and in MoS2 defects. The transfer characteristics present hysteresis that is enhanced by illumination. At low drain bias, the devices feature low contact resistance of [Formula: see text] ON current as high as [Formula: see text] 105 ON-OFF ratio, mobility of ∼1 cm2 V-1 s-1 and photoresponsivity [Formula: see text].

10.
Mater Horiz ; 11(10): 2397-2405, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38470088

RESUMEN

Black phosphorus (BP) field-effect transistors with ultrathin channels exhibit unipolar p-type electrical conduction over a wide range of temperatures and pressures. Herein, we study a device that exhibits mobility up to 100 cm2 V-1 s-1 and a memory window up to 1.3 µA. Exposure to a supercontinuum white light source reveals that negative photoconductivity (NPC) and positive photoconductivity (PPC) coexist in the same device. Such behavior is attributed to the chemisorbed O2 molecules, with a minor role of physisorbed H2O molecules. The coexistence of NPC and PPC can be exploited in neuromorphic vision sensors, requiring the human eye retina to process the optical signals through alerting and protection (NPC), adaptation (PPC), followed by imaging and processing. Our results open new avenues for the use of BP and other two-dimentional (2D) semiconducting materials in transistors, memories, and neuromorphic vision sensors for advanced applications in robotics, self-driving cars, etc.

11.
Nanoscale ; 15(25): 10834-10841, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37335022

RESUMEN

With the study of Janus monolayer transition metal dichalcogenides, in which one of the two chalcogen layers is replaced by another type of chalcogen atom, research on two-dimensional materials is advancing into new areas. Yet only little is known about this new kind of material class, mainly due to the difficult synthesis. In this work, we synthesize MoSSe monolayers from exfoliated samples and compare their Raman signatures with density functional theory calculations of phonon modes that depend in a nontrivial way on doping and strain. With this as a tool, we can infer limits for the possible combinations of strain and doping levels. This reference data can be applied to all MoSSe Janus samples in order to quickly estimate their strain and doping, providing a reliable tool for future work. In order to narrow down the results for our samples further, we analyze the temperature-dependent photoluminescence spectra and time-correlated single-photon counting measurements. The lifetime of Janus MoSSe monolayers exhibits two decay processes with an average total lifetime of 1.57 ns. Moreover, we find a strong trion contribution to the photoluminescence spectra at low temperature which we attribute to excess charge carriers, corroborating our ab initio calculations.


Asunto(s)
Briófitas , Calcógenos , Teoría Funcional de la Densidad , Fonones , Frío
12.
Nanoscale Adv ; 5(24): 6958-6966, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38059017

RESUMEN

Field-effect transistors based on molybdenum disulfide (MoS2) exhibit a hysteresis in their transfer characteristics, which can be utilized to realize 2D memory devices. This hysteresis has been attributed to charge trapping due to adsorbates, or defects either in the MoS2 lattice or in the underlying substrate. We fabricated MoS2 field-effect transistors on SiO2/Si substrates, irradiated these devices with Xe30+ ions at a kinetic energy of 180 keV to deliberately introduce defects and studied the resulting changes of their electrical and hysteretic properties. We find clear influences of the irradiation: while the charge carrier mobility decreases linearly with increasing ion fluence (up to only 20% of its initial value) the conductivity actually increases again after an initial drop of around two orders of magnitude. We also find a significantly reduced n-doping (≈1012 cm-2) and a well-developed hysteresis after the irradiation. The hysteresis height increases with increasing ion fluence and enables us to characterize the irradiated MoS2 field-effect transistor as a memory device with remarkably longer relaxation times (≈ minutes) compared to previous works.

13.
ChemElectroChem ; 9(17): e202200586, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36246850

RESUMEN

The electrocatalytic activity concerning the hydrogen evolution reaction (HER) of micrometer-sized MoS2 layers transferred on a glassy carbon surface was evaluated by scanning electrochemical cell microscopy (SECCM) in a high-throughput approach. Multiple areas on single or multiple MoS2 layers were assessed using a hopping mode nanocapillary positioning with a hopping distance of 500 nm and a nanopipette size of around 55 nm. The locally recorded linear sweep voltammograms revealed a high lateral heterogeneity over the MoS2 sheet regarding their HER activity, with currents between -40 and -60 pA recorded at -0.89 V vs. reversible hygrogen electrode over about 4400 different measured areas on the MoS2 sheet. Stacked MoS2 layers did not show different electrocatalytic activity than the single MoS2 sheet, suggesting that the interlayer resistance influences the electrocatalytic activity less than the resistances induced by possible polymer residues or water layers formed between the transferred MoS2 sheet and the glassy carbon electrode.

14.
Nanotechnology ; 22(26): 265703, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576809

RESUMEN

We present atomic force microscopy and scanning Kelvin probe data obtained under ultra-high vacuum conditions from graphene exfoliated on crystalline SrTiO(3) substrates. The contact potential difference shows a monotonic increase with the number of graphene layers until after five layers of saturation is reached. By identifying the saturation value with the work function of graphite we determine the work function of single and bilayer graphene to be Φ(SLG) = 4.409 ± 0.039 eV and Φ(BLG) = 4.516 ± 0.035 eV, respectively. In agreement with the higher work function of single-layer graphene with respect to free-standing graphene, our measurements indicate an accumulation of charge carriers corresponding to a doping of the exfoliated graphene layer with electrons.

15.
ACS Omega ; 6(24): 15929-15939, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34179637

RESUMEN

Two-dimensional semiconductors such as MoS2 are promising for future electrical devices. The interface to metals is a crucial and critical aspect for these devices because undesirably high resistances due to Fermi level pinning are present, resulting in unwanted energy losses. To date, experimental information on such junctions has been obtained mainly indirectly by evaluating transistor characteristics. The fact that the metal-semiconductor interface is typically embedded, further complicates the investigation of the underlying physical mechanisms at the interface. Here, we present a method to provide access to a realistic metal-semiconductor interface by large-area exfoliation of single-layer MoS2 on clean polycrystalline gold surfaces. This approach allows us to measure the relative charge neutrality level at the MoS2-gold interface and its spatial variation almost directly using Kelvin probe force microscopy even under ambient conditions. By bringing together hitherto unconnected findings about the MoS2-gold interface, we can explain the anomalous Raman signature of MoS2 in contact to metals [ACS Nano. 7, 2013, 11350] which has been the subject of intense recent discussions. In detail, we identify the unusual Raman mode as the A1g mode with a reduced Raman shift (397 cm-1) due to the weakening of the Mo-S bond. Combined with our X-ray photoelectron spectroscopy data and the measured charge neutrality level, this is in good agreement with a previously predicted mechanism for Fermi level pinning at the MoS2-gold interface [Nano Lett. 14, 2014, 1714]. As a consequence, the strength of the MoS2-gold contact can be determined from the intensity ratio between the reduced A1greduced mode and the unperturbed A1g mode.

16.
ACS Omega ; 6(4): 2487-2493, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553867

RESUMEN

In this work, we have studied the pH-dependent surface charge nature of nanoporous graphene. This has been investigated by membrane potential and by streaming current measurements, both with varying pH. We observed a lowering of the membrane potential with decreasing pH for a fixed concentration gradient of potassium chloride (KCl) in the Donnan dominated regime. Interestingly, the potential reverses its sign close to pH 4. The fitted value of effective fixed ion concentration (C̅ R) in the membrane also follows the same trend. The streaming current measurements show a similar trend with sign reversal around pH 4.2. The zeta potential data from the streaming current measurement is further analyzed using a 1-pK model. The model is used to determine a representative pK (acid-base equilibrium constant) of 4.2 for the surface of these perforated graphene membranes. In addition, we have also theoretically investigated the effect of the PET support in our membrane potential measurement using numerical simulations. Our results indicate that the concentration drop inside the PET support can be a major contributor (up to 85%) for a significant deviation of the membrane potential from the ideal Nernst potential.

17.
ACS Appl Mater Interfaces ; 12(33): 37454-37463, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814400

RESUMEN

Two-dimensional (2D) materials with nanometer-size holes are promising systems for DNA sequencing, water purification, and molecule selection/separation. However, controllable creation of holes with uniform sizes and shapes is still a challenge, especially when the 2D material consists of several atomic layers as, e.g., MoS2, the archetypical transition metal dichalcogenide. We use analytical potential molecular dynamics simulations to study the response of 2D MoS2 to cluster irradiation. We model both freestanding and supported sheets and assess the amount of damage created in MoS2 by the impacts of noble gas clusters in a wide range of cluster energies and incident angles. We show that cluster irradiation can be used to produce uniform holes in 2D MoS2 with the diameter being dependent on cluster size and energy. Energetic clusters can also be used to displace sulfur atoms preferentially from either top or bottom layers of S atoms in MoS2 and also clean the surface of MoS2 sheets from adsorbents. Our results for MoS2, which should be relevant to other 2D transition metal dichalcogenides, suggest new routes toward cluster beam engineering of devices based on 2D inorganic materials.

18.
J Phys Chem Lett ; 11(21): 9415-9420, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33104361

RESUMEN

Graphene oxide has shown exceptional properties in terms of water permeability and filtration characteristics. Here the suitability of graphene oxide membranes for the spatial separation of hydronium and hydroxide ions after photocatalytic water splitting is demonstrated. Instead of relying on classical size exclusion by adjusting the membrane laminates' interlayer spacings, nonmodified graphene oxide is used to exploit the presence of its natural functional groups and surface charges for filtration. Despite a significantly larger interlayer spacing inside the membrane compared with the size of the hydrated radii of the ions, highly asymmetric transport behavior and a 6 times higher mobility for hydronium than for hydroxide are observed. DFT simulations reveal that hydroxide ions are more prone to interact and stick to the functional groups of graphene oxide, while diffusion of hydronium ions through the membrane is less impeded and aligns well with the concept of the Grotthuss mechanism.

19.
ACS Appl Mater Interfaces ; 12(36): 40532-40540, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32805860

RESUMEN

Metal contacts play a fundamental role in nanoscale devices. In this work, Schottky metal contacts in monolayer molybdenum disulfide (MoS2) field-effect transistors are investigated under electron beam irradiation. It is shown that the exposure of Ti/Au source/drain electrodes to an electron beam reduces the contact resistance and improves the transistor performance. The electron beam conditioning of contacts is permanent, while the irradiation of the channel can produce transient effects. It is demonstrated that irradiation lowers the Schottky barrier at the contacts because of thermally induced atom diffusion and interfacial reactions. The simulation of electron paths in the device reveals that most of the beam energy is absorbed in the metal contacts. The study demonstrates that electron beam irradiation can be effectively used for contact improvement through local annealing.

20.
J Phys Chem Lett ; 10(17): 4805-4811, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31382749

RESUMEN

Low-energy electrons (LEEs) are of great relevance for ion-induced radiation damage in cells and genes. We show that charge exchange of ions leads to LEE emission upon impact on condensed matter. By using a graphene monolayer as a simple model system for condensed organic matter and utilizing slow highly charged ions (HCIs) as projectiles, we highlight the importance of charge exchange alone for LEE emission. We find a large number of ejected electrons resulting from individual ion impacts (up to 80 electrons/ion for Xe40+). More than 90% of emitted electrons have energies well below 15 eV. This "splash" of low-energy electrons is interpreted as the consequence of ion deexcitation via an interatomic Coulombic decay (ICD) process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA