Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 37(6): e5113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38316107

RESUMEN

31P MRSI allows for the non-invasive mapping of pH and magnesium ion content (Mg) in vivo, by translating the chemical shifts of inorganic phosphate and adenosine-5'-triphosphate (ATP) to pH and Mg via suitable calibration equations, such as the modified Henderson-Hasselbalch equation. However, the required constants in these calibration equations are typically only determined for physiological conditions, posing a particular challenge for their application to diseased tissue, where the biochemical conditions might change manyfold. In this article, we propose a multi-parametric look-up algorithm aiming at the condition-independent determination of pH and Mg by employing multiple quantifiable 31P spectral properties simultaneously. To generate entries for an initial look-up table, measurements from 114 model solutions prepared with varying chemical properties were made at 9.4 T. The number of look-up table entries was increased by inter- and extrapolation using a multi-dimensional function developed based on the Hill equation. The assignment of biochemical parameters, that is, pH and Mg, is realized using probability distributions incorporating specific measurement uncertainties on the quantified spectral parameters, allowing for an estimation of most plausible output values. As proof of concept, we applied a version of the look-up algorithm employing only the chemical shifts of γ- and ß-ATP for the determination of pH and Mg to in vivo 3D 31P MRSI data acquired at 7 T from (i) the lower leg muscles of healthy volunteers and (ii) the brains of patients with glioblastoma. The resulting volumetric maps showed plausible values for pH and Mg, partly revealing differences from maps generated using the conventional calibration equations.


Asunto(s)
Algoritmos , Magnesio , Magnesio/análisis , Magnesio/química , Concentración de Iones de Hidrógeno , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Fósforo/química , Isótopos de Fósforo
2.
NMR Biomed ; : e5173, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38783837

RESUMEN

PURPOSE: The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task. METHODS: A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated. RESULTS: The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy. CONCLUSIONS: This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.

3.
J Magn Reson Imaging ; 59(4): 1409-1422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37504495

RESUMEN

BACKGROUND: Weakly supervised learning promises reduced annotation effort while maintaining performance. PURPOSE: To compare weakly supervised training with full slice-wise annotated training of a deep convolutional classification network (CNN) for prostate cancer (PC). STUDY TYPE: Retrospective. SUBJECTS: One thousand four hundred eighty-nine consecutive institutional prostate MRI examinations from men with suspicion for PC (65 ± 8 years) between January 2015 and November 2020 were split into training (N = 794, enriched with 204 PROSTATEx examinations) and test set (N = 695). FIELD STRENGTH/SEQUENCE: 1.5 and 3T, T2-weighted turbo-spin-echo and diffusion-weighted echo-planar imaging. ASSESSMENT: Histopathological ground truth was provided by targeted and extended systematic biopsy. Reference training was performed using slice-level annotation (SLA) and compared to iterative training utilizing patient-level annotations (PLAs) with supervised feedback of CNN estimates into the next training iteration at three incremental training set sizes (N = 200, 500, 998). Model performance was assessed by comparing specificity at fixed sensitivity of 0.97 [254/262] emulating PI-RADS ≥ 3, and 0.88-0.90 [231-236/262] emulating PI-RADS ≥ 4 decisions. STATISTICAL TESTS: Receiver operating characteristic (ROC) and area under the curve (AUC) was compared using DeLong and Obuchowski test. Sensitivity and specificity were compared using McNemar test. Statistical significance threshold was P = 0.05. RESULTS: Test set (N = 695) ROC-AUC performance of SLA (trained with 200/500/998 exams) was 0.75/0.80/0.83, respectively. PLA achieved lower ROC-AUC of 0.64/0.72/0.78. Both increased performance significantly with increasing training set size. ROC-AUC for SLA at 500 exams was comparable to PLA at 998 exams (P = 0.28). ROC-AUC was significantly different between SLA and PLA at same training set sizes, however the ROC-AUC difference decreased significantly from 200 to 998 training exams. Emulating PI-RADS ≥ 3 decisions, difference between PLA specificity of 0.12 [51/433] and SLA specificity of 0.13 [55/433] became undetectable (P = 1.0) at 998 exams. Emulating PI-RADS ≥ 4 decisions, at 998 exams, SLA specificity of 0.51 [221/433] remained higher than PLA specificity at 0.39 [170/433]. However, PLA specificity at 998 exams became comparable to SLA specificity of 0.37 [159/433] at 200 exams (P = 0.70). DATA CONCLUSION: Weakly supervised training of a classification CNN using patient-level-only annotation had lower performance compared to training with slice-wise annotations, but improved significantly faster with additional training data. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Poliésteres
4.
J Magn Reson Imaging ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733369

RESUMEN

BACKGROUND: Radiomics models trained on data from one center typically show a decline of performance when applied to data from external centers, hindering their introduction into large-scale clinical practice. Current expert recommendations suggest to use only reproducible radiomics features isolated by multiscanner test-retest experiments, which might help to overcome the problem of limited generalizability to external data. PURPOSE: To evaluate the influence of using only a subset of robust radiomics features, defined in a prior in vivo multi-MRI-scanner test-retest-study, on the performance and generalizability of radiomics models. STUDY TYPE: Retrospective. POPULATION: Patients with monoclonal plasma cell disorders. Training set (117 MRIs from center 1); internal test set (42 MRIs from center 1); external test set (143 MRIs from center 2-8). FIELD STRENGTH/SEQUENCE: 1.5T and 3.0T; T1-weighted turbo spin echo. ASSESSMENT: The task for the radiomics models was to predict plasma cell infiltration, determined by bone marrow biopsy, noninvasively from MRI. Radiomics machine learning models, including linear regressor, support vector regressor (SVR), and random forest regressor (RFR), were trained on data from center 1, using either all radiomics features, or using only reproducible radiomics features. Models were tested on an internal (center 1) and a multicentric external data set (center 2-8). STATISTICAL TESTS: Pearson correlation coefficient r and mean absolute error (MAE) between predicted and actual plasma cell infiltration. Fisher's z-transformation, Wilcoxon signed-rank test, Wilcoxon rank-sum test; significance level P < 0.05. RESULTS: When using only reproducible features compared with all features, the performance of the SVR on the external test set significantly improved (r = 0.43 vs. r = 0.18 and MAE = 22.6 vs. MAE = 28.2). For the RFR, the performance on the external test set deteriorated when using only reproducible instead of all radiomics features (r = 0.33 vs. r = 0.44, P = 0.29 and MAE = 21.9 vs. MAE = 20.5, P = 0.10). CONCLUSION: Using only reproducible radiomics features improves the external performance of some, but not all machine learning models, and did not automatically lead to an improvement of the external performance of the overall best radiomics model. TECHNICAL EFFICACY: Stage 2.

5.
Eur Radiol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955845

RESUMEN

OBJECTIVES: Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information, recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep learning (DL) analyzes MRI data independently, and has been shown to be on par with clinical radiologists, but has yet to be incorporated into RCs. The goal of this study is to re-assess the diagnostic quality of RCs, the impact of replacing PI-RADS with DL predictions, and potential performance gains by adding DL besides PI-RADS. MATERIAL AND METHODS: One thousand six hundred twenty-seven consecutive examinations from 2014 to 2021 were included in this retrospective single-center study, including 517 exams withheld for RC testing. Board-certified radiologists assessed PI-RADS during clinical routine, then systematic and MRI/Ultrasound-fusion biopsies provided histopathological ground truth for significant prostate cancer (sPC). nnUNet-based DL ensembles were trained on biparametric MRI predicting the presence of sPC lesions (UNet-probability) and a PI-RADS-analogous five-point scale (UNet-Likert). Previously published RCs were validated as is; with PI-RADS substituted by UNet-Likert (UNet-Likert-substituted RC); and with both UNet-probability and PI-RADS (UNet-probability-extended RC). Together with a newly fitted RC using clinical data, PI-RADS and UNet-probability, existing RCs were compared by receiver-operating characteristics, calibration, and decision-curve analysis. RESULTS: Diagnostic performance remained stable for UNet-Likert-substituted RCs. DL contained complementary diagnostic information to PI-RADS. The newly-fitted RC spared 49% [252/517] of biopsies while maintaining the negative predictive value (94%), compared to PI-RADS ≥ 4 cut-off which spared 37% [190/517] (p < 0.001). CONCLUSIONS: Incorporating DL as an independent diagnostic marker for RCs can improve patient stratification before biopsy, as there is complementary information in DL features and clinical PI-RADS assessment. CLINICAL RELEVANCE STATEMENT: For patients with positive prostate screening results, a comprehensive diagnostic workup, including prostate MRI, DL analysis, and individual classification using nomograms can identify patients with minimal prostate cancer risk, as they benefit less from the more invasive biopsy procedure. KEY POINTS: The current MRI-based nomograms result in many negative prostate biopsies. The addition of DL to nomograms with clinical data and PI-RADS improves patient stratification before biopsy. Fully automatic DL can be substituted for PI-RADS without sacrificing the quality of nomogram predictions. Prostate nomograms show cancer detection ability comparable to previous validation studies while being suitable for the addition of DL analysis.

6.
Eur Radiol ; 34(7): 4484-4491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38133673

RESUMEN

OBJECTIVE: To assess the potential dose reduction achievable with clinical photon-counting CT (PCCT) in ultra-high resolution (UHR) mode compared to acquisitions using the standard resolution detector mode (Std). MATERIALS AND METHODS: With smaller detector pixels, PCCT achieves far higher spatial resolution than energy-integrating (EI) CT systems. The reconstruction of UHR acquisitions to the lower spatial resolution of conventional systems results in an image noise and radiation dose reduction. We quantify this small pixel effect in measurements of semi-anthropomorphic abdominal phantoms of different sizes as well as in a porcine knuckle in the first clinical PCCT system by using the UHR mode (0.2 mm pixel size at isocenter) in comparison to the standard resolution mode (0.4 mm). At different slice thicknesses (0.4 up to 4 mm) and dose levels between 4 and 12 mGy, reconstructions using filtered backprojection were performed to the same target spatial resolution, i.e., same modulation transfer function, using both detector modes. Image noise and the resulting potential dose reduction was quantified as a figure of merit. RESULTS: Images acquired using the UHR mode yield lower noise in comparison to acquisitions using standard pixels at the same resolution and noise level. This holds for sharper convolution kernels at the spatial resolution limit of the standard mode, e.g., up to a factor 3.2 in noise reduction and a resulting potential dose reduction of up to almost 90%. CONCLUSION: Using sharper convolution kernels, UHR acquisitions allow for a significant dose reduction compared to acquisitions using the standard detector mode. CLINICAL RELEVANCE: Acquisitions should always be performed using the ultra-high resolution detector mode, if possible, to benefit from the intrinsic noise and dose reduction. KEY POINTS: • Ionizing radiation used in computed tomography examinations is a concern to public health. • The ultra-high resolution of novel photon-counting systems can be invested towards a noise and dose reduction if only a spatial resolution below the resolution limit of the detector is desired. • Acquisitions should always be performed in ultra-high resolution mode, if possible, to benefit from an intrinsic dose reduction.


Asunto(s)
Fantasmas de Imagen , Fotones , Dosis de Radiación , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Porcinos , Animales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
7.
Eur Radiol ; 34(8): 5120-5130, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38206405

RESUMEN

OBJECTIVES: To assess radiologists' current use of, and opinions on, structured reporting (SR) in oncologic imaging, and to provide recommendations for a structured report template. MATERIALS AND METHODS: An online survey with 28 questions was sent to European Society of Oncologic Imaging (ESOI) members. The questionnaire had four main parts: (1) participant information, e.g., country, workplace, experience, and current SR use; (2) SR design, e.g., numbers of sections and fields, and template use; (3) clinical impact of SR, e.g., on report quality and length, workload, and communication with clinicians; and (4) preferences for an oncology-focused structured CT report. Data analysis comprised descriptive statistics, chi-square tests, and Spearman correlation coefficients. RESULTS: A total of 200 radiologists from 51 countries completed the survey: 57.0% currently utilized SR (57%), with a lower proportion within than outside of Europe (51.0 vs. 72.7%; p = 0.006). Among SR users, the majority observed markedly increased report quality (62.3%) and easier comparison to previous exams (53.5%), a slightly lower error rate (50.9%), and fewer calls/emails by clinicians (78.9%) due to SR. The perceived impact of SR on communication with clinicians (i.e., frequency of calls/emails) differed with radiologists' experience (p < 0.001), and experience also showed low but significant correlations with communication with clinicians (r = - 0.27, p = 0.003), report quality (r = 0.19, p = 0.043), and error rate (r = - 0.22, p = 0.016). Template use also affected the perceived impact of SR on report quality (p = 0.036). CONCLUSION: Radiologists regard SR in oncologic imaging favorably, with perceived positive effects on report quality, error rate, comparison of serial exams, and communication with clinicians. CLINICAL RELEVANCE STATEMENT: Radiologists believe that structured reporting in oncologic imaging improves report quality, decreases the error rate, and enables better communication with clinicians. Implementation of structured reporting in Europe is currently below the international level and needs society endorsement. KEY POINTS: • The majority of oncologic imaging specialists (57% overall; 51% in Europe) use structured reporting in clinical practice. • The vast majority of oncologic imaging specialists use templates (92.1%), which are typically cancer-specific (76.2%). • Structured reporting is perceived to markedly improve report quality, communication with clinicians, and comparison to prior scans.


Asunto(s)
Actitud del Personal de Salud , Neoplasias , Radiólogos , Sociedades Médicas , Humanos , Europa (Continente) , Encuestas y Cuestionarios , Neoplasias/diagnóstico por imagen , Radiólogos/estadística & datos numéricos , Sistemas de Información Radiológica/estadística & datos numéricos
8.
MAGMA ; 37(1): 27-38, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37737942

RESUMEN

OBJECTIVE: First implementation of dynamic oxygen-17 (17O) MRI at 7 Tesla (T) during neuronal stimulation in the human brain. METHODS: Five healthy volunteers underwent a three-phase 17O gas (17O2) inhalation experiment. Combined right-side visual stimulus and right-hand finger tapping were used to achieve neuronal stimulation in the left cerebral hemisphere. Data analysis included the evaluation of the relative partial volume (PV)-corrected time evolution of absolute 17O water (H217O) concentration and of the relative signal evolution without PV correction. Statistical analysis was performed using a one-tailed paired t test. Blood oxygen level-dependent (BOLD) experiments were performed to validate the stimulation paradigm. RESULTS: The BOLD maps showed significant activity in the stimulated left visual and sensorimotor cortex compared to the non-stimulated right side. PV correction of 17O MR data resulted in high signal fluctuations with a noise level of 10% due to small regions of interest (ROI), impeding further quantitative analysis. Statistical evaluation of the relative H217O signal with PV correction (p = 0.168) and without (p = 0.382) did not show significant difference between the stimulated left and non-stimulated right sensorimotor ROI. DISCUSSION: The change of cerebral oxygen metabolism induced by sensorimotor and visual stimulation is not large enough to be reliably detected with the current setup and methodology of dynamic 17O MRI at 7 T.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Isótopos de Oxígeno , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Oxígeno
9.
Biophys J ; 122(8): 1459-1469, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36905121

RESUMEN

Mitochondrial inner membrane potentials in cardiomyocytes may oscillate in cycles of depolarization/repolarization when the mitochondrial network is exposed to metabolic or oxidative stress. The frequencies of such oscillations are dynamically changing while clusters of weakly coupled mitochondrial oscillators adjust to a common phase and frequency. Across the cardiac myocyte, the averaged signal of the mitochondrial population follows self-similar or fractal dynamics; however, fractal properties of individual mitochondrial oscillators have not yet been examined. We show that the largest synchronously oscillating cluster exhibits a fractal dimension, D, that is indicative of self-similar behavior with D=1.27±0.11, in contrast to the remaining network mitochondria whose fractal dimension is close to that of Brownian noise, D=1.58±0.10. We further demonstrate that fractal behavior is correlated with local coupling mechanisms, whereas it is only weakly linked to measures of functional connections between mitochondria. Our findings suggest that individual mitochondrial fractal dimensions may serve as a simple measure of local mitochondrial coupling.


Asunto(s)
Fractales , Mitocondrias , Estrés Oxidativo , Potencial de la Membrana Mitocondrial , Membranas Mitocondriales
10.
Int J Cancer ; 152(5): 854-864, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121664

RESUMEN

PROBASE is a population-based, randomized trial of 46 495 German men recruited at age 45 to compare effects of risk-adapted prostate cancer (PCa) screening starting either immediately at age 45, or at a deferred age of 50 years. Based on prostate-specific antigen (PSA) levels, men are classified into risk groups with different screening intervals: low-risk (<1.5 ng/ml, 5-yearly screening), intermediate-risk (1.5-2.99 ng/ml, 2 yearly), and high risk (>3 ng/ml, recommendation for immediate biopsy). Over the first 6 years of study participation, attendance rates to scheduled screening visits varied from 70.5% to 79.4%, depending on the study arm and risk group allocation, in addition 11.2% to 25.4% of men reported self-initiated PSA tests outside the PROBASE protocol. 38.5% of participants had a history of digital rectal examination or PSA testing prior to recruitment to PROBASE, frequently associated with family history of PCa. These men showed higher rates (33% to 57%, depending on subgroups) of self-initiated PSA testing in-between PROBASE screening rounds. In the high-risk groups (both arms), the biopsy acceptance rate was 64% overall, but was higher among men with screening PSA ≥4 ng/ml (>71%) and with PIRADS ≥3 findings upon multiparameter magnetic resonance imaging (mpMRI) (>72%), compared with men with PSA ≥3 to 4 ng/ml (57%) or PIRADS score ≤ 2 (59%). Overall, PROBASE shows good acceptance of a risk-adapted PCa screening strategy in Germany. Implementation of such a strategy should be accompanied by a well-structured communication, to explain not only the benefits but also the harms of PSA screening.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Humanos , Masculino , Persona de Mediana Edad , Biopsia , Detección Precoz del Cáncer/métodos , Tamizaje Masivo/métodos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/patología , Factores de Riesgo
11.
Radiology ; 306(1): 186-199, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35972360

RESUMEN

Background Prostate Imaging Reporting and Data System (PI-RADS) version 2.0 requires multiparametric MRI of the prostate, including diffusion-weighted imaging (DWI) and dynamic contrast-enhanced (DCE) imaging sequences; however, the contribution of DCE imaging remains unclear. Purpose To assess whether DCE imaging in addition to apparent diffusion coefficient (ADC) and normalized T2 values improves PI-RADS version 2.0 for prediction of clinically significant prostate cancer (csPCa). Materials and Methods In this retrospective study, clinically reported PI-RADS lesions in consecutive men who underwent 3-T multiparametric MRI (T2-weighted, DWI, and DCE MRI) from May 2015 to September 2016 were analyzed quantitatively and compared with systematic and targeted MRI-transrectal US fusion biopsy. The normalized T2 signal (nT2), ADC measurement, mean early-phase DCE signal (mDCE), and heuristic DCE parameters were calculated. Logistic regression analysis indicated the most predictive DCE parameters for csPCa (Gleason grade group ≥2). Receiver operating characteristic parameter models were compared using the Obuchowski test. Recursive partitioning analysis determined ADC and mDCE value ranges for combined use with PI-RADS. Results Overall, 260 men (median age, 64 years [IQR, 58-69 years]) with 432 lesions (csPCa [n = 152] and no csPCa [n = 280]) were included. The mDCE parameter was predictive of csPCa when accounting for the ADC and nT2 parameter in the peripheral zone (odds ratio [OR], 1.76; 95% CI: 1.30, 2.44; P = .001) but not the transition zone (OR, 1.17; 95% CI: 0.81, 1.69; P = .41). Recursive partitioning analysis selected an ADC cutoff of 0.897 × 10-3 mm2/sec (P = .04) as a classifier for peripheral zone lesions with a PI-RADS score assessed on the ADC map (hereafter, ADC PI-RADS) of 3. The mDCE parameter did not differentiate ADC PI-RADS 3 lesions (P = .11), but classified lesions with ADC PI-RADS scores greater than 3 with low ADC values (less than 0.903 × 10-3 mm2/sec, P < .001) into groups with csPCa rates of 70% and 97% (P = .008). A lesion size cutoff of 1.5 cm and qualitative DCE parameters were not defined as classifiers according to recursive partitioning (P > .05). Conclusion Quantitative or qualitative dynamic contrast-enhanced MRI was not relevant for Prostate Imaging Reporting and Data System (PI-RADS) 3 lesion risk stratification, while quantitative apparent diffusion coefficient (ADC) values were helpful in upgrading PI-RADS 3 and PI-RADS 4 lesions. Quantitative ADC measurement may be more important for risk stratification than current methods in future versions of PI-RADS. © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Goh in this issue.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Persona de Mediana Edad , Neoplasias de la Próstata/patología , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos , Imagen de Difusión por Resonancia Magnética , Próstata/patología
12.
Magn Reson Med ; 90(1): 231-239, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36806110

RESUMEN

PURPOSE: To apply a navigator-based slice-tracking method to prospectively compensate respiratory motion for kidney pseudo-continuous arterial spin labeling (pCASL), using spin-echo (SE) EPI acquisition. METHODS: A single gradient-echo slice selection and projection readout at the location of the diaphragm along the inferior-superior direction was applied as a navigator. Navigator acquisition and fat suppression were inserted before each transverse imaging slice of the readouts of a 2D-SE-EPI-based pCASL sequence. Motion information was calculated after exclusion of the signal saturation in the navigator signal caused by EPI excitations. The motion information was then used to directly adjust the slice positioning in real time. RESULTS: The respiratory motion from the navigator signal was calculated, and slice positioning was changed in real time based on the motion information. We could show that motion compensation reduces kidney movement, and that the coefficients of variation across renal perfusion values were significantly reduced when motion correction was applied. The average reduction of coefficients of variation was approximately 20%, resulting in a more accurate and detailed structure of the respective perfusion maps. CONCLUSIONS: This study demonstrates the feasibility of a navigator-based slice-tracking technique in kidney imaging with a SE-EPI readout pCASL sequence to reduce kidney motion.


Asunto(s)
Arterias , Encéfalo , Marcadores de Spin , Movimiento (Física) , Riñón/diagnóstico por imagen
13.
Magn Reson Med ; 90(4): 1569-1581, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317562

RESUMEN

PURPOSE: The purpose of this study was to compare the potential of asymmetry-based (APTwasym ), Lorentzian-fit-based (PeakAreaAPT and MTconst ), and relaxation-compensated (MTRRex APT and MTRRex MT) CEST contrasts of the amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) for early response assessment and prediction of progression-free survival (PFS) in patients with glioma. METHODS: Seventy-two study participants underwent CEST-MRI at 3T from July 2018 to December 2021 in a prospective clinical trial four to 6 wk after the completion of radiotherapy for diffuse glioma. Tumor segmentations were performed on T2w -FLAIR and contrast-enhanced T1w images. Therapy response assessment and determination of PFS were performed according to response assessment in neuro oncology (RANO) criteria using clinical follow-up data with a median observation time of 9.2 mo (range, 1.6-40.8) and compared to CEST MRI metrics. Statistical testing included receiver operating characteristic analyses, Mann-Whitney-U-test, Kaplan-Meier analyses, and logrank-test. RESULTS: MTconst (AUC = 0.79, p < 0.01) showed a stronger association with RANO response assessment compared to PeakAreaAPT (AUC = 0.71, p = 0.02) and MTRRex MT (AUC = 0.71, p = 0.02), and enabled differentiation of participants with pseudoprogression (n = 8) from those with true progression (AUC = 0.79, p = 0.02). Furthermore, MTconst (HR = 3.04, p = 0.01), PeakAreaAPT (HR = 0.39, p = 0.03), and APTwasym (HR = 2.63, p = 0.02) were associated with PFS. MTRRex APT was not associated with any outcome. CONCLUSION: MTconst , PeakAreaAPT, and APTwasym imaging predict clinical outcome by means of progression-free survival. Furthermore, MTconst enables differentiation of radiation-induced pseudoprogression from disease progression. Therefore, the assessed metrics may have synergistic potential for supporting clinical decision making during follow-up of patients with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Amidas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/radioterapia , Glioma/patología , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Protones , Curva ROC
14.
NMR Biomed ; 36(3): e4847, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259249

RESUMEN

Substantial cortical gray matter tissue damage, which correlates with clinical disease severity, has been revealed in multiple sclerosis (MS) using advanced magnetic resonance imaging (MRI) methods at 3 T and the use of ultra-high field, as well as in histopathology studies. While clinical assessment mainly focuses on lesions using T 1 - and T 2 -weighted MRI, quantitative MRI (qMRI) methods are capable of uncovering subtle microstructural changes. The aim of this ultra-high field study is to extract possible future MR biomarkers for the quantitative evaluation of regional cortical pathology. Because of their sensitivity to iron, myelin, and in part specifically to cortical demyelination, T 1 , T 2 , R 2 * , and susceptibility mapping were performed including two novel susceptibility markers; in addition, cortical thickness as well as the volumes of 34 cortical regions were computed. Data were acquired in 20 patients and 16 age- and sex-matched healthy controls. In 18 cortical regions, large to very large effect sizes (Cohen's d ≥ 1) and statistically significant differences in qMRI values between patients and controls were revealed compared with only four regions when using more standard MR measures, namely, volume and cortical thickness. Moreover, a decrease in all susceptibility contrasts ( χ , χ + , χ - ) and R 2 * values indicates that the role of cortical demyelination might outweigh inflammatory processes in the form of iron accumulation in cortical MS pathology, and might also indicate iron loss. A significant association between susceptibility contrasts as well as R 2 * of the caudal middle frontal gyrus and disease duration was found (adjusted R2 : 0.602, p = 0.0011). Quantitative MRI parameters might be more sensitive towards regional cortical pathology compared with the use of conventional markers only and therefore may play a role in early detection of tissue damage in MS in the future.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Vaina de Mielina/patología , Encéfalo/patología
15.
Eur Radiol ; 33(2): 803-811, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35986773

RESUMEN

OBJECTIVES: Photon-counting detector computed tomography (PCD-CT) is a promising new technique for CT imaging. The aim of the present study was the in vitro comparison of coil-related artifacts in PCD-CT and conventional energy-integrating detector CT (EID-CT) using a comparable standard brain imaging protocol before and after metal artifact reduction (MAR). METHODS: A nidus-shaped rubber latex, resembling an aneurysm of the cerebral arteries, was filled with neurovascular platinum coils and inserted into a brain imaging phantom. Image acquisition and reconstruction were repeatedly performed for PCD-CT and EID-CT (n = 10, respectively) using a standard brain imaging protocol. Moreover, linear interpolation MAR was performed for PCD-CT and EID-CT images. The degree of artifacts was analyzed quantitatively (standard deviation in a donut-shaped region of interest) and qualitatively (5-point scale analysis). RESULTS: Quantitative and qualitative analysis demonstrated a lower degree of metal artifacts in the EID-CT images compared to the total-energy PCD-CT images (e.g., 82.99 ± 7.89 Hounsfield units (HU) versus 90.35 ± 6.28 HU; p < 0.001) with no qualitative difference between the high-energy bin PCD-CT images and the EID-CT images (4.18 ± 0.37 and 3.70 ± 0.64; p = 0.575). After MAR, artifacts were more profoundly reduced in the PCD-CT images compared to the EID-CT images in both analyses (e.g., 2.35 ± 0.43 and 3.18 ± 0.34; p < 0.001). CONCLUSION: PCD-CT in combination with MAR have the potential to provide an improved option for reduction of coil-related artifacts in cerebral imaging in this in vitro study. KEY POINTS: • Photon-counting detector CT produces more artifacts compared to energy-integrating detector CT without metal artifact reduction in cerebral in vitro imaging after neurovascular coil-embolization. • Spectral information of PCD-CT provides the potential for new post-processing techniques, since the coil-related artifacts were lower in PCD-CT images compared to EID-CT images after linear interpolation metal artifact reduction in this in vitro study.


Asunto(s)
Artefactos , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Encéfalo/diagnóstico por imagen , Fantasmas de Imagen , Fotones , Neuroimagen
16.
Eur Radiol ; 33(11): 7463-7476, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37507610

RESUMEN

OBJECTIVES: To evaluate a fully automatic deep learning system to detect and segment clinically significant prostate cancer (csPCa) on same-vendor prostate MRI from two different institutions not contributing to training of the system. MATERIALS AND METHODS: In this retrospective study, a previously bi-institutionally validated deep learning system (UNETM) was applied to bi-parametric prostate MRI data from one external institution (A), a PI-RADS distribution-matched internal cohort (B), and a csPCa stratified subset of single-institution external public challenge data (C). csPCa was defined as ISUP Grade Group ≥ 2 determined from combined targeted and extended systematic MRI/transrectal US-fusion biopsy. Performance of UNETM was evaluated by comparing ROC AUC and specificity at typical PI-RADS sensitivity levels. Lesion-level analysis between UNETM segmentations and radiologist-delineated segmentations was performed using Dice coefficient, free-response operating characteristic (FROC), and weighted alternative (waFROC). The influence of using different diffusion sequences was analyzed in cohort A. RESULTS: In 250/250/140 exams in cohorts A/B/C, differences in ROC AUC were insignificant with 0.80 (95% CI: 0.74-0.85)/0.87 (95% CI: 0.83-0.92)/0.82 (95% CI: 0.75-0.89). At sensitivities of 95% and 90%, UNETM achieved specificity of 30%/50% in A, 44%/71% in B, and 43%/49% in C, respectively. Dice coefficient of UNETM and radiologist-delineated lesions was 0.36 in A and 0.49 in B. The waFROC AUC was 0.67 (95% CI: 0.60-0.83) in A and 0.7 (95% CI: 0.64-0.78) in B. UNETM performed marginally better on readout-segmented than on single-shot echo-planar-imaging. CONCLUSION: For same-vendor examinations, deep learning provided comparable discrimination of csPCa and non-csPCa lesions and examinations between local and two independent external data sets, demonstrating the applicability of the system to institutions not participating in model training. CLINICAL RELEVANCE STATEMENT: A previously bi-institutionally validated fully automatic deep learning system maintained acceptable exam-level diagnostic performance in two independent external data sets, indicating the potential of deploying AI models without retraining or fine-tuning, and corroborating evidence that AI models extract a substantial amount of transferable domain knowledge about MRI-based prostate cancer assessment. KEY POINTS: • A previously bi-institutionally validated fully automatic deep learning system maintained acceptable exam-level diagnostic performance in two independent external data sets. • Lesion detection performance and segmentation congruence was similar on the institutional and an external data set, as measured by the weighted alternative FROC AUC and Dice coefficient. • Although the system generalized to two external institutions without re-training, achieving expected sensitivity and specificity levels using the deep learning system requires probability thresholds to be adjusted, underlining the importance of institution-specific calibration and quality control.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Próstata , Masculino , Humanos , Imagen por Resonancia Magnética , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Estudios Retrospectivos
17.
Eur Radiol ; 33(2): 1194-1204, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35986772

RESUMEN

OBJECTIVES: To explore radiologists' opinions regarding the shift from in-person oncologic multidisciplinary team meetings (MDTMs) to online MDTMs. To assess the perceived impact of online MDTMs, and to evaluate clinical and technical aspects of online meetings. METHODS: An online questionnaire including 24 questions was e-mailed to all European Society of Oncologic Imaging (ESOI) members. Questions targeted the structure and efficacy of online MDTMs, including benefits and limitations. RESULTS: A total of 204 radiologists responded to the survey. Responses were evaluated using descriptive statistical analysis. The majority (157/204; 77%) reported a shift to online MDTMs at the start of the pandemic. For the most part, this transition had a positive effect on maintaining and improving attendance. The majority of participants reported that online MDTMs provide the same clinical standard as in-person meetings, and that interdisciplinary discussion and review of imaging data were not hindered. Seventy three of 204 (35.8%) participants favour reverting to in-person MDTs, once safe to do so, while 7/204 (3.4%) prefer a continuation of online MDTMs. The majority (124/204, 60.8%) prefer a combination of physical and online MDTMs. CONCLUSIONS: Online MDTMs are a viable alternative to in-person meetings enabling continued timely high-quality provision of care with maintained coordination between specialties. They were accepted by the majority of surveyed radiologists who also favoured their continuation after the pandemic, preferably in combination with in-person meetings. An awareness of communication issues particular to online meetings is important. Training, improved software, and availability of support are essential to overcome technical and IT difficulties reported by participants. KEY POINTS: • Majority of surveyed radiologists reported shift from in-person to online oncologic MDT meetings during the COVID-19 pandemic. • The shift to online MDTMs was feasible and generally accepted by the radiologists surveyed with the majority reporting that online MDTMs provide the same clinical standard as in-person meetings. • Most would favour the return to in-person MDTMs but would also accept the continued use of online MDTMs following the end of the current pandemic.


Asunto(s)
COVID-19 , Humanos , Pandemias , Radiólogos , Encuestas y Cuestionarios , Grupo de Atención al Paciente
18.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37029886

RESUMEN

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Asunto(s)
Imagen por Resonancia Magnética , Imagen de Cuerpo Entero , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Imagen de Cuerpo Entero/métodos , Alemania , Campos Magnéticos
19.
BMC Med Imaging ; 23(1): 174, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907876

RESUMEN

BACKGROUND: With the rise in importance of personalized medicine and deep learning, we combine the two to create personalized neural networks. The aim of the study is to show a proof of concept that data from just one patient can be used to train deep neural networks to detect tumor progression in longitudinal datasets. METHODS: Two datasets with 64 scans from 32 patients with glioblastoma multiforme (GBM) were evaluated in this study. The contrast-enhanced T1w sequences of brain magnetic resonance imaging (MRI) images were used. We trained a neural network for each patient using just two scans from different timepoints to map the difference between the images. The change in tumor volume can be calculated with this map. The neural networks were a form of a Wasserstein-GAN (generative adversarial network), an unsupervised learning architecture. The combination of data augmentation and the network architecture allowed us to skip the co-registration of the images. Furthermore, no additional training data, pre-training of the networks or any (manual) annotations are necessary. RESULTS: The model achieved an AUC-score of 0.87 for tumor change. We also introduced a modified RANO criteria, for which an accuracy of 66% can be achieved. CONCLUSIONS: We show a novel approach to deep learning in using data from just one patient to train deep neural networks to monitor tumor change. Using two different datasets to evaluate the results shows the potential to generalize the method.


Asunto(s)
Glioblastoma , Redes Neurales de la Computación , Humanos , Imagen por Resonancia Magnética , Encéfalo , Glioblastoma/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
20.
Int J Cancer ; 150(11): 1861-1869, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35076933

RESUMEN

There is no generally accepted screening strategy for prostate cancer (PCa). From February 2014 to December 2019 a randomized trial (PROBASE) recruited 46 642 men at age 45 to determine the efficacy of risk-adapted prostate-specific antigen-based (PSA) screening, starting at either 45 or 50 years. PSA tests are used to classify participants into a low (<1.5 ng/mL), intermediate (1.5-2.99 ng/mL) or high (≥3 ng/mL) risk group. In cases of confirmed PSA values ≥3 ng/mL participants are recommended a prostate biopsy with multiparametric magnetic resonance imaging (mpMRI). Half of the participants (N = 23 341) were offered PSA screening immediately at age 45; the other half (N = 23 301) were offered digital rectal examination (DRE) with delayed PSA screening at age 50. Of 23 301 participants who accepted baseline PSA testing in the immediate screening arm, 89.2% fell into the low, 9.3% into intermediate, and 1.5% (N = 344) into the high risk group. Repeat PSA measurement confirmed high-risk status for 186 men (0.8%), of whom 120 (64.5%) underwent a biopsy. A total of 48 PCas was detected (overall prevalence 0.2%), of which 15 had International Society of Uropathology (ISUP) grade 1, 29 had ISUP 2 and only 4 had ISUP ≥3 cancers. In the delayed screening arm, 23 194 participants were enrolled and 6537 underwent a DRE with 57 suspicious findings, two of which showed PCa (both ISUP 1; detection rate 0.03%). In conclusion, the prevalence of screen-detected aggressive (ISUP ≥3) PCa in 45-year-old men is very low. DRE did not turn out effective for early detection of PCa.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias de la Próstata , Biopsia , Humanos , Masculino , Tamizaje Masivo/métodos , Persona de Mediana Edad , Polimetil Metacrilato , Antígeno Prostático Específico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA