Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(27): e2300241, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36932894

RESUMEN

A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.

2.
Langmuir ; 39(13): 4611-4621, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36943005

RESUMEN

The reliable assessment of surface area is extremely important for many applications, e.g., catalysis, separation, and energy storage/conversion. Within this context, major progress has been made concerning the textural characterization of porous materials in the gas/dry state, e.g., gas physisorption and mercury porosimetry. However, these methods are not sufficient for the characterization of wet materials utilized in liquid-phase processes. For this, the application of nuclear magnetic resonance (NMR) relaxometry has been considered, but a systematic and rigorous assessment of the applicability of NMR relaxometry for reliable surface and pore size characterization of nanoporous materials is missing. Hence, we present a systematic study in which we assess the applicability of NMR relaxometry for reliable surface area assessment utilizing for the first time true surface area benchmark data based on argon 87 K adsorption on nonporous particles (silica and carbon black) coupled with the development of an advanced methodology including the investigation of the choice of the probe molecule and the effect of its accessibility to the pore network. Our results show that the method provides a fast (a few minutes per measurement) and reliable surface area of silica and carbon black model materials immersed in a liquid phase. In addition, our work clearly demonstrates the potential of NMR relaxometry for the targeted surface area assessment of defined pore classes (here ultramicropores) and suggests a new methodology for the characterization of pore entrances (pore window size). Furthermore, we investigate the effect of wettability and suggest that NMR relaxometry could be developed into a unique tool for assessing the wetting characteristics of adsorbate phases on pore surfaces. This fundamental study can be considered a first major step in enabling NMR relaxometry for reliable surface area assessment for wet materials, particularly relevant for materials used in processes occurring in a liquid phase.

3.
Nanoscale ; 14(46): 17354-17364, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378146

RESUMEN

Size-exclusion chromatography (SEC) is a well-known, versatile and scalable technique for the separation of molecules according to their hydrodynamic size in solution as well as for the determination of molecular weight distributions of polymers. In this paper we demonstrate and generalize the applicability of SEC to the classification and characterization of multimodal distributions of nanoparticles over a broad size range. After calibration with gold standards from 5 nm to 80 nm, the calibration curve is used to determine the particle size distributions (PSDs) of the standards which are in agreement with comprehensive nanoparticle size analysis by analytical ultracentrifugation. Universal calibration curves independent of the core material and surface functionality can be constructed if the pore diameter of the stationary phase exceeds the particle diameter by a factor of 2-3. Mixtures of gold standards are separated by SEC and evaluated in terms of peak resolution and size-dependent separation curves depending on how well the individual peaks are resolved. Baseline separation of a multimodal mixture is observed and its PSD is determined. Mixtures can be fractionated into coarse and fine fractions with nm precision at different switching times of the fraction collector. Our study demonstrates the strength of SEC to classify multimodal PSDs as well as to accurately determine size distributions of complex nanoparticle dispersions over a broad size range.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA