Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 297(4): 101140, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461088

RESUMEN

Biological energy transduction underlies all physiological phenomena in cells. The metabolic systems that support energy transduction have been of great interest due to their association with numerous pathologies including diabetes, cancer, rare genetic diseases, and aberrant cell death. Commercially available bioenergetics technologies (e.g., extracellular flux analysis, high-resolution respirometry, fluorescent dye kits, etc.) have made practical assessment of metabolic parameters widely accessible. This has facilitated an explosion in the number of studies exploring, in particular, the biological implications of oxygen consumption rate (OCR) and substrate level phosphorylation via glycolysis (i.e., via extracellular acidification rate (ECAR)). Though these technologies have demonstrated substantial utility and broad applicability to cell biology research, they are also susceptible to historical assumptions, experimental limitations, and other caveats that have led to premature and/or erroneous interpretations. This review enumerates various important considerations for designing and interpreting cellular and mitochondrial bioenergetics experiments, some common challenges and pitfalls in data interpretation, and some potential "next steps" to be taken that can address these highlighted challenges.


Asunto(s)
Diabetes Mellitus/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Glucólisis , Mitocondrias/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Fosforilación Oxidativa , Humanos , Consumo de Oxígeno
2.
J Biol Chem ; 295(48): 16207-16216, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32747443

RESUMEN

Compensatory changes in energy expenditure occur in response to positive and negative energy balance, but the underlying mechanism remains unclear. Under low energy demand, the mitochondrial electron transport system is particularly sensitive to added energy supply (i.e. reductive stress), which exponentially increases the rate of H2O2 (JH2O2) production. H2O2 is reduced to H2O by electrons supplied by NADPH. NADP+ is reduced back to NADPH by activation of mitochondrial membrane potential-dependent nicotinamide nucleotide transhydrogenase (NNT). The coupling of reductive stress-induced JH2O2 production to NNT-linked redox buffering circuits provides a potential means of integrating energy balance with energy expenditure. To test this hypothesis, energy supply was manipulated by varying flux rate through ß-oxidation in muscle mitochondria minus/plus pharmacological or genetic inhibition of redox buffering circuits. Here we show during both non-ADP- and low-ADP-stimulated respiration that accelerating flux through ß-oxidation generates a corresponding increase in mitochondrial JH2O2 production, that the majority (∼70-80%) of H2O2 produced is reduced to H2O by electrons drawn from redox buffering circuits supplied by NADPH, and that the rate of electron flux through redox buffering circuits is directly linked to changes in oxygen consumption mediated by NNT. These findings provide evidence that redox reactions within ß-oxidation and the electron transport system serve as a barometer of substrate flux relative to demand, continuously adjusting JH2O2 production and, in turn, the rate at which energy is expended via NNT-mediated proton conductance. This variable flux through redox circuits provides a potential compensatory mechanism for fine-tuning energy expenditure to energy balance in real time.


Asunto(s)
Metabolismo Energético , Mitocondrias Musculares/enzimología , NADP Transhidrogenasa AB-Específica/metabolismo , Consumo de Oxígeno , Adenosina Difosfato/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción
3.
Am J Physiol Endocrinol Metab ; 320(5): E938-E950, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33813880

RESUMEN

Elevated mitochondrial hydrogen peroxide (H2O2) emission and an oxidative shift in cytosolic redox environment have been linked to high-fat-diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle ß-oxidation flux were studied. In mice overexpressing peroxisome proliferator-activated receptor-α in muscle (MCK-PPARα), lipid-supported mitochondrial respiration, membrane potential (ΔΨm), and H2O2 production rate (JH2O2) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1-deficient, fatty-liver dystrophic mice, another model characterized by increased ß-oxidation flux and glucose intolerance. Crossing MCAT (mitochondria-targeted catalase) with MCK-PPARα mice normalized JH2O2 production, redox environment, and glucose tolerance, but surprisingly, both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high-fat diet, MCK-PPARα mice were characterized by much lower whole body, fat, and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high-fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in an attempt to restore bioenergetic homeostasis.NEW & NOTEWORTHY Prior work has suggested that mitochondrial dysfunction is an underlying cause of insulin resistance in muscle because it limits fatty acid oxidation and therefore leads to the accumulation of cytotoxic lipid intermediates. The implication has been that therapeutic strategies to accelerate ß-oxidation will be protective. The current study provides evidence that genetically increasing flux through ß-oxidation in muscle imposes reductive stress that is not beneficial but rather detrimental to metabolic regulation.


Asunto(s)
Catalasa/genética , Intolerancia a la Glucosa/genética , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , PPAR alfa/genética , Animales , Catalasa/metabolismo , Metabolismo Energético/genética , Intolerancia a la Glucosa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/genética , Especificidad de Órganos/genética , Oxidación-Reducción , Estrés Oxidativo/genética , PPAR alfa/metabolismo
4.
Vasc Med ; 26(3): 247-258, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33685287

RESUMEN

Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease (PAD) and is characterized by high rates of morbidity and mortality. As with most severe cardiovascular disease manifestations, Black individuals disproportionately present with CLI. Accordingly, there remains a clear need to better understand the reasons for this discrepancy and to facilitate personalized therapeutic options specific for this population. Gastrocnemius muscle was obtained from White and Black healthy adult volunteers and patients with CLI for whole transcriptome shotgun sequencing (WTSS) and enrichment analysis was performed to identify alterations in specific Reactome pathways. When compared to their race-matched healthy controls, both White and Black patients with CLI demonstrated similar reductions in nuclear and mitochondrial encoded genes and mitochondrial oxygen consumption across multiple substrates, indicating a common bioenergetic paradigm associated with amputation outcomes regardless of race. Direct comparisons between tissues of White and Black patients with CLI revealed hemostasis, extracellular matrix organization, platelet regulation, and vascular wall interactions to be uniquely altered in limb muscles of Black individuals. Among traditional vascular growth factor signaling targets, WTSS revealed only Tie1 to be significantly altered from White levels in Black limb muscle tissues. Quantitative reverse transcription polymerase chain reaction validation of select identified targets verified WTSS directional changes and supports reductions in MMP9 and increases in NUDT4P1 and GRIK2 as unique to limb muscles of Black patients with CLI. This represents a critical first step in better understanding the transcriptional program similarities and differences between Black and White patients in the setting of amputations related to CLI and provides a promising start for therapeutic development in this population.


Asunto(s)
Isquemia Crónica que Amenaza las Extremidades , Enfermedad Arterial Periférica , Adulto , Amputación Quirúrgica , Enfermedad Crítica , Humanos , Isquemia/diagnóstico , Isquemia/genética , Isquemia/cirugía , Recuperación del Miembro , Músculo Esquelético/cirugía , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/cirugía , Factores Raciales , Factores de Riesgo , Resultado del Tratamiento
5.
Am J Pathol ; 188(5): 1246-1262, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29454751

RESUMEN

Limited efficacy of clinical interventions for peripheral arterial disease necessitates a better understanding of the environmental and genetic determinants of tissue pathology. Existing research has largely ignored the early skeletal muscle injury response during hind limb ischemia (HLI). We compared the hind limb muscle response, after 6 hours of ischemia, in two mouse strains that differ dramatically in their postischemic extended recovery: C57BL/6J and BALB/cJ. Perfusion, measured by laser Doppler and normalized to the control limb, differed only slightly between strains after HLI (<12% across all measures). Similar (<10%) effect sizes in lectin-perfused vessel area and no differences in tissue oxygen saturation measured by reflectance spectroscopy were also found. Muscles from both strains were functionally impaired after HLI, but greater muscle necrosis and loss of dystrophin-positive immunostaining were observed in BALB/cJ muscle compared with C57BL/6J. Muscle cell-specific dystrophin loss and reduced viability were also detected in additional models of ischemia that were independent of residual perfusion differences. Our results indicate that factors other than the completeness of ischemia alone (ie, background genetics) influence the magnitude of acute ischemic muscle injury. These findings may have implications for future development of therapeutic interventions for limb ischemia and for understanding the phasic etiology of chronic and acute ischemic muscle pathophysiology.


Asunto(s)
Miembro Posterior/patología , Isquemia/patología , Músculo Esquelético/patología , Animales , Supervivencia Celular/fisiología , Distrofina/metabolismo , Miembro Posterior/irrigación sanguínea , Miembro Posterior/fisiopatología , Isquemia/metabolismo , Isquemia/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Contracción Muscular/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiopatología , Especificidad de la Especie
6.
Circulation ; 136(3): 281-296, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28442482

RESUMEN

BACKGROUND: Critical limb ischemia is a manifestation of peripheral artery disease that carries significant mortality and morbidity risk in humans, although its genetic determinants remain largely unknown. We previously discovered 2 overlapping quantitative trait loci in mice, Lsq-1 and Civq-1, that affected limb muscle survival and stroke volume after femoral artery or middle cerebral artery ligation, respectively. Here, we report that a Bag3 variant (Ile81Met) segregates with tissue protection from hind-limb ischemia. METHODS: We treated mice with either adeno-associated viruses encoding a control (green fluorescent protein) or 2 BAG3 (Bcl-2-associated athanogene-3) variants, namely Met81 or Ile81, and subjected the mice to hind-limb ischemia. RESULTS: We found that the BAG3 Ile81Met variant in the C57BL/6 (BL6) mouse background segregates with protection from tissue necrosis in a shorter congenic fragment of Lsq-1 (C.B6-Lsq1-3). BALB/c mice treated with adeno-associated virus encoding the BL6 BAG3 variant (Ile81; n=25) displayed reduced limb-tissue necrosis and increased limb tissue perfusion compared with Met81- (n=25) or green fluorescent protein- (n=29) expressing animals. BAG3Ile81, but not BAG3Met81, improved ischemic muscle myopathy and muscle precursor cell differentiation and improved muscle regeneration in a separate, toxin-induced model of injury. Systemic injection of adeno-associated virus-BAG3Ile81 (n=9), but not BAG3Met81 (n=10) or green fluorescent protein (n=5), improved ischemic limb blood flow and limb muscle histology and restored muscle function (force production). Compared with BAG3Met81, BAG3Ile81 displayed improved binding to the small heat shock protein (HspB8) in ischemic skeletal muscle cells and enhanced ischemic muscle autophagic flux. CONCLUSIONS: Taken together, our data demonstrate that genetic variation in BAG3 plays an important role in the prevention of ischemic tissue necrosis. These results highlight a pathway that preserves tissue survival and muscle function in the setting of ischemia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Variación Genética/genética , Miembro Posterior/irrigación sanguínea , Isquemia/genética , Enfermedades Musculares/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Transformada , Miembro Posterior/patología , Isquemia/patología , Isquemia/prevención & control , Ratones , Ratones Congénicos , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Enfermedades Musculares/patología , Enfermedades Musculares/prevención & control , Unión Proteica/fisiología
8.
J Vasc Surg ; 65(5): 1504-1514.e11, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28024849

RESUMEN

OBJECTIVE: Reduced skeletal muscle mitochondrial function might be a contributing mechanism to the myopathy and activity based limitations that typically plague patients with peripheral arterial disease (PAD). We hypothesized that mitochondrial dysfunction, myofiber atrophy, and muscle contractile deficits are inherently determined by the genetic background of regenerating ischemic mouse skeletal muscle, similar to how patient genetics affect the distribution of disease severity with clinical PAD. METHODS: Genetically ischemia protected (C57BL/6) and susceptible (BALB/c) mice underwent either unilateral subacute hind limb ischemia (SLI) or myotoxic injury (cardiotoxin) for 28 days. Limbs were monitored for blood flow and tissue oxygen saturation and tissue was collected for the assessment of histology, muscle contractile force, gene expression, mitochondrial content, and respiratory function. RESULTS: Despite similar tissue O2 saturation and mitochondrial content between strains, BALB/c mice suffered persistent ischemic myofiber atrophy (55.3% of C57BL/6) and muscle contractile deficits (approximately 25% of C57BL/6 across multiple stimulation frequencies). SLI also reduced BALB/c mitochondrial respiratory capacity, assessed in either isolated mitochondria (58.3% of C57BL/6 at SLI on day (d)7, 59.1% of C57BL/6 at SLI d28 across multiple conditions) or permeabilized myofibers (38.9% of C57BL/6 at SLI d7; 76.2% of C57BL/6 at SLI d28 across multiple conditions). SLI also resulted in decreased calcium retention capacity (56.0% of C57BL/6) in BALB/c mitochondria. Nonischemic cardiotoxin injury revealed similar recovery of myofiber area, contractile force, mitochondrial respiratory capacity, and calcium retention between strains. CONCLUSIONS: Ischemia-susceptible BALB/c mice suffered persistent muscle atrophy, impaired muscle function, and mitochondrial respiratory deficits during SLI. Interestingly, parental strain susceptibility to myopathy appears specific to regenerative insults including an ischemic component. Our findings indicate that the functional deficits that plague PAD patients could include mitochondrial respiratory deficits genetically inherent to the regenerating muscle myofibers.


Asunto(s)
Isquemia/metabolismo , Isquemia/fisiopatología , Mitocondrias Musculares/metabolismo , Contracción Muscular , Fuerza Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Animales , Respiración de la Célula , Modelos Animales de Enfermedad , Genotipo , Miembro Posterior , Isquemia/genética , Isquemia/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mitocondrias Musculares/patología , Desarrollo de Músculos , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Fenotipo , Regeneración , Flujo Sanguíneo Regional , Especificidad de la Especie , Factores de Tiempo
9.
J Mol Cell Cardiol ; 97: 191-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27262673

RESUMEN

Critical limb ischemia is a devastating manifestation of peripheral arterial disease with no effective strategies for improving morbidity and mortality outcomes. We tested the hypothesis that cellular mitochondrial function is a key component of limb pathology and that improving mitochondrial function represents a novel paradigm for therapy. BALB/c mice were treated with a therapeutic mitochondrial-targeting peptide (MTP-131) and subjected to limb ischemia (HLI). Compared to vehicle control, MTP-131 rescued limb muscle capillary density and blood flow (64.7±11% of contralateral vs. 39.9±4%), and improved muscle regeneration. MTP-131 also increased electron transport system flux across all conditions at HLI day-7. In vitro, primary muscle cells exposed to experimental ischemia demonstrated markedly reduced (~75%) cellular respiration, which was rescued by MTP-131 during a recovery period. Compared to muscle cells, endothelial cell (HUVEC) respiration was inherently protected from ischemia (~30% reduction), but was also enhanced by MTP-131. These findings demonstrate an important link between ischemic tissue bioenergetics and limb blood flow and indicate that the mitochondria may be a pharmaceutical target for therapeutic intervention during critical limb ischemia.


Asunto(s)
Miembro Posterior/irrigación sanguínea , Miembro Posterior/metabolismo , Isquemia/complicaciones , Isquemia/metabolismo , Mitocondrias Musculares/metabolismo , Enfermedades Musculares/etiología , Animales , Respiración de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales , Humanos , Masculino , Ratones , Enfermedades Musculares/patología , Enfermedades Musculares/terapia , Necrosis , Oligopéptidos/farmacología , Péptidos/farmacología
10.
J Vasc Surg ; 64(4): 1101-1111.e2, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26254821

RESUMEN

OBJECTIVE: The primary preclinical model of peripheral artery disease, which involves acute limb ischemia (ALI), can result in appreciable muscle injury that is attributed to the acuity of the ischemic injury. A less acute model of murine limb ischemia using ameroid constrictors (ACs) has been developed in an attempt to mimic the chronic nature of human disease. However, there is currently little understanding of how genetics influence muscle injury following subacute arterial occlusion in the mouse. METHODS: We investigated the influence of mouse genetics on skeletal muscle tissue survival, blood flow, and vascular density by subjecting two different mouse strains, C57BL/6 (BL6) and BALB/c, to ALI or subacute limb ischemia using single (1AC) or double (2AC) AC placement on the femoral artery. RESULTS: Similar to ALI, the 2AC model resulted in significant tissue necrosis and limb perfusion deficits in genetically susceptible BALB/c but not BL6 mice. In the 1AC model, no outward evidence of tissue necrosis was observed, and there were no differences in limb blood flow between BL6 and BALB/c. However, BALB/c mice displayed significantly greater muscle injury, as evidenced by increased inflammation and myofiber atrophy, despite having no differences in CD31(+) and SMA(+) vascular density and area. BALB/c mice also displayed significantly greater centralized myonuclei, indicating increased muscle regeneration. CONCLUSIONS: The susceptibility of skeletal muscle to ischemia-induced injury is at least partly independent of muscle blood flow and vascular density, consistent with a muscle cell autonomous response that is genetically determined. Further development of preclinical models of peripheral artery disease that more accurately reflect the nature of the human disease may allow more accurate identification of genetic targets for therapeutic intervention.


Asunto(s)
Isquemia/genética , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología , Neovascularización Fisiológica , Actinas/metabolismo , Animales , Biomarcadores/metabolismo , Velocidad del Flujo Sanguíneo , Modelos Animales de Enfermedad , Arteria Femoral/cirugía , Predisposición Genética a la Enfermedad , Miembro Posterior , Isquemia/metabolismo , Isquemia/patología , Isquemia/fisiopatología , Ligadura , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Necrosis , Fenotipo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Regeneración , Flujo Sanguíneo Regional , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA