Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(6): 907-916, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36168886

RESUMEN

Polygenic scores (PGS) can identify individuals at risk of adverse health events and guide genetics-based personalized medicine. However, it is not clear how well PGS translate between different populations, limiting their application to well-studied ethnicities. Proteins are intermediate traits linking genetic predisposition and environmental factors to disease, with numerous blood circulating protein levels representing functional readouts of disease-related processes. We hypothesized that studying the genetic architecture of a comprehensive set of blood-circulating proteins between a European and an Arab population could shed fresh light on the translatability of PGS to understudied populations. We therefore conducted a genome-wide association study with whole-genome sequencing data using 1301 proteins measured on the SOMAscan aptamer-based affinity proteomics platform in 2935 samples of Qatar Biobank and evaluated the replication of protein quantitative traits (pQTLs) from European studies in an Arab population. Then, we investigated the colocalization of shared pQTL signals between the two populations. Finally, we compared the performance of protein PGS derived from a Caucasian population in a European and an Arab cohort. We found that the majority of shared pQTL signals (81.8%) colocalized between both populations. About one-third of the genetic protein heritability was explained by protein PGS derived from a European cohort, with protein PGS performing ~20% better in Europeans when compared to Arabs. Our results are relevant for the translation of PGS to non-Caucasian populations, as well as for future efforts to extend genetic research to understudied populations.


Asunto(s)
Árabes , Sitios de Carácter Cuantitativo , Población Blanca , Humanos , Árabes/genética , Estudio de Asociación del Genoma Completo , Población Blanca/genética , Genética de Población
2.
J Allergy Clin Immunol ; 154(3): 792-806, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38750824

RESUMEN

BACKGROUND: TRPM4 is a broadly expressed, calcium-activated, monovalent cation channel that regulates immune cell function in mice and cell lines. Clinically, however, partial loss- or gain-of-function mutations in TRPM4 lead to arrhythmia and heart disease, with no documentation of immunologic disorders. OBJECTIVE: To characterize functional cellular mechanisms underlying the immune dysregulation phenotype in a proband with a mutated TRPM4 gene. METHODS: We employed a combination of biochemical, cell biological, imaging, omics analyses, flow cytometry, and gene editing approaches. RESULTS: We report the first human cases to our knowledge with complete loss of the TRPM4 channel, leading to immune dysregulation with frequent bacterial and fungal infections. Single-cell and bulk RNA sequencing point to altered expression of genes affecting cell migration, specifically in monocytes. Inhibition of TRPM4 in T cells and the THP-1 monocyte cell line reduces migration. More importantly, primary T cells and monocytes from TRPM4 patients migrate poorly. Finally, CRISPR knockout of TRPM4 in THP-1 cells greatly reduces their migration potential. CONCLUSION: Our results demonstrate that TRPM4 plays a critical role in regulating immune cell migration, leading to increased susceptibility to infections.


Asunto(s)
Movimiento Celular , Monocitos , Canales Catiónicos TRPM , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/inmunología , Humanos , Monocitos/inmunología , Movimiento Celular/genética , Movimiento Celular/inmunología , Linfocitos T/inmunología , Masculino , Femenino , Células THP-1
3.
PLoS Pathog ; 18(9): e1010819, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121875

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition characterized by hypoxemia and poor lung compliance, is associated with high mortality. ARDS induced by COVID-19 has similar clinical presentations and pathological manifestations as non-COVID-19 ARDS. However, COVID-19 ARDS is associated with a more protracted inflammatory respiratory failure compared to traditional ARDS. Therefore, a comprehensive molecular comparison of ARDS of different etiologies groups may pave the way for more specific clinical interventions. METHODS AND FINDINGS: In this study, we compared COVID-19 ARDS (n = 43) and bacterial sepsis-induced (non-COVID-19) ARDS (n = 24) using multi-omic plasma profiles covering 663 metabolites, 1,051 lipids, and 266 proteins. To address both between- and within- ARDS group variabilities we followed two approaches. First, we identified 706 molecules differently abundant between the two ARDS etiologies, revealing more than 40 biological processes differently regulated between the two groups. From these processes, we assembled a cascade of therapeutically relevant pathways downstream of sphingosine metabolism. The analysis suggests a possible overactivation of arginine metabolism involved in long-term sequelae of ARDS and highlights the potential of JAK inhibitors to improve outcomes in bacterial sepsis-induced ARDS. The second part of our study involved the comparison of the two ARDS groups with respect to clinical manifestations. Using a data-driven multi-omic network, we identified signatures of acute kidney injury (AKI) and thrombocytosis within each ARDS group. The AKI-associated network implicated mitochondrial dysregulation which might lead to post-ARDS renal-sequalae. The thrombocytosis-associated network hinted at a synergy between prothrombotic processes, namely IL-17, MAPK, TNF signaling pathways, and cell adhesion molecules. Thus, we speculate that combination therapy targeting two or more of these processes may ameliorate thrombocytosis-mediated hypercoagulation. CONCLUSION: We present a first comprehensive molecular characterization of differences between two ARDS etiologies-COVID-19 and bacterial sepsis. Further investigation into the identified pathways will lead to a better understanding of the pathophysiological processes, potentially enabling novel therapeutic interventions.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Inhibidores de las Cinasas Janus , Síndrome de Dificultad Respiratoria , Sepsis , Trombocitosis , Arginina , COVID-19/complicaciones , Humanos , Interleucina-17 , Lípidos , Síndrome de Dificultad Respiratoria/etiología , Sepsis/complicaciones , Esfingosina
4.
Herz ; 49(5): 371-377, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38743296

RESUMEN

BACKGROUND: Percutaneous valve therapies (PVT) are performed on a large number of patients. With increasing procedural volume, the need for follow-up has also increased. Follow-up in the heart valve clinic is endorsed by recent guidelines but utilization is unknown, making resource allocation in the clinic difficult. Central follow-up in valve centers may not be feasible for all patients in the future. METHODS: In our center, follow-up for PVT patients is scheduled at 1 month and 12 months after the index procedure. Patients are reminded of their appointment by invitation letters or phone calls. We analyzed 150 consecutive patients who underwent transcutaneous aortic valve implantation (TAVI) and MitraClip implantation (n = 300) at our center. RESULTS: At 1 month, 72.7% of patients attended their follow-up, while at 12 months the rate dropped to 58%. Patients who underwent TAVI were older than the MitraClip patients (82.7 vs. 76.1 years) but had lower mean logEuroSCORE (22.6% vs. 25.9%). There was no significant difference in 1­year mortality between TAVI and MitraClip patients (20% vs. 17.3%). By contrast, the rate of missed follow-up visits was higher for TAVI compared to MitraClip patients (52% vs. 33.3%; p = 0.002). Female patients less frequently attended follow-up (p = 0.005), whereas age, EuroSCORE, NYHA class, ejection fraction, and health status (EQ-5DVAS) were not predictors of attendance in multivariable analysis. Although the result of the EQ-5D assessment was not associated with mortality or attendance, completing the questionnaire was associated with overall survival (p < 0.001). CONCLUSION: In our heart valve clinic, we observed a high percentage of missed follow-up appointments (42% at 12 months) despite a structured follow-up plan. Factors significantly associated with non-attendance in multivariable analysis were female gender and having a TAVI rather than MitraClip. Future follow-up concepts should take such findings into account, and decentralized approaches need to be explored.


Asunto(s)
Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Femenino , Masculino , Anciano , Anciano de 80 o más Años , Estudios de Seguimiento , Cooperación del Paciente/estadística & datos numéricos , Estenosis de la Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/mortalidad , Adhesión a Directriz/estadística & datos numéricos , Guías de Práctica Clínica como Asunto , Resultado del Tratamiento , Cuidados Posteriores/estadística & datos numéricos
5.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999939

RESUMEN

Dilated cardiomyopathy (DCM) is characterized by reduced left ventricular ejection fraction (LVEF) and left or biventricular dilatation. We evaluated sex-specific associations of circulating proteins and metabolites with structural and functional heart parameters in DCM. Plasma samples (297 men, 71 women) were analyzed for proteins using Olink assays (targeted analysis) or LC-MS/MS (untargeted analysis), and for metabolites using LC MS/MS (Biocrates AbsoluteIDQ p180 Kit). Associations of proteins (n = 571) or metabolites (n = 163) with LVEF, measured left ventricular end diastolic diameter (LVEDDmeasured), and the dilation percentage of LVEDD from the norm (LVEDDacc. to HENRY) were examined in combined and sex-specific regression models. To disclose protein-metabolite relations, correlation analyses were performed. Associations between proteins, metabolites and LVEF were restricted to men, while associations with LVEDD were absent in both sexes. Significant metabolites were validated in a second independent DCM cohort (93 men). Integrative analyses demonstrated close relations between altered proteins and metabolites involved in lipid metabolism, inflammation, and endothelial dysfunction with declining LVEF, with kynurenine as the most prominent finding. In DCM, the loss of cardiac function was reflected by circulating proteins and metabolites with sex-specific differences. Our integrative approach demonstrated that concurrently assessing specific proteins and metabolites might help us to gain insights into the alterations associated with DCM.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Masculino , Femenino , Cardiomiopatía Dilatada/sangre , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Persona de Mediana Edad , Caracteres Sexuales , Anciano , Función Ventricular Izquierda , Espectrometría de Masas en Tándem/métodos , Proteínas Sanguíneas/metabolismo , Adulto , Volumen Sistólico , Biomarcadores/sangre , Factores Sexuales , Metaboloma
6.
J Proteome Res ; 22(6): 1723-1733, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37057806

RESUMEN

A balance between the synthesis and degradation of proteins is referred to as protein turnover, which is crucial for cellular protein homeostasis. Proteome-wide analysis of protein turnover in adipocytes, which are well-known for their role in energy storage and their link to obesity and metabolism disorders, is yet to be conducted. Thus, with this objective in mind, our investigation utilized a comparative analysis of time-dependent SILAC labeling to assess protein turnover in 3T3-L1 adipocytes, spanning a period of 0 to 144 h. We observed that relatively faster or slower protein half-lives in several protein groups were associated with the PPARγ signaling pathway, energy metabolism, extracellular matrix, ubiquitin-proteasome system, RNA splicing, Golgi complex, and lysosome. It is anticipated that these protein half-life profiles will provide greater clarity on the life cycle of adipocyte proteome and shed light on how they maintain protein homeostasis.


Asunto(s)
Adipocitos , Proteoma , Animales , Ratones , Proteoma/genética , Proteoma/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Diferenciación Celular
7.
Neurobiol Dis ; 182: 106147, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178811

RESUMEN

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Enfermedades del Sistema Nervioso/etiología , Sistema Nervioso Central , Encéfalo
8.
Mol Med ; 29(1): 13, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703108

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. METHODS: We performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). To this end, we used two different approaches, first we compared the molecular omics profiles between ARDS groups, and second, we correlated clinical manifestations within each group with the omics profiles. RESULTS: The comparison of the two ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. CONCLUSION: In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Sepsis , Humanos , COVID-19/complicaciones , Proteómica , Multiómica , Síndrome de Dificultad Respiratoria/etiología , Sepsis/complicaciones , Inflamación
9.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35469796

RESUMEN

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Asunto(s)
Angiopoyetina 2 , COVID-19 , Necroptosis , Síndrome de Dificultad Respiratoria , Angiopoyetina 2/metabolismo , COVID-19/complicaciones , Humanos , Proteómica , Síndrome de Dificultad Respiratoria/virología
10.
Clin Proteomics ; 20(1): 31, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550624

RESUMEN

BACKGROUND: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance. METHODS: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins. RESULTS: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F). CONCLUSION: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.

11.
Eur J Neurol ; 30(4): 1048-1058, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36504168

RESUMEN

BACKGROUND AND PURPOSE: Idiopathic facial palsy (IFP) accounts for over 60% of peripheral facial palsy (FP) cases. The cause of IFP remains to be determined. Possible etiologies are nerve swelling due to inflammation and/or viral infection. In this study, we applied an integrative mass spectrometry approach to identify possibly altered protein patterns in the cerebrospinal fluid (CSF) of IFP patients. METHODS: We obtained CSF samples from 34 patients with FP. In four patients, varicella-zoster virus was the cause (VZV-FP). Among the 30 patients diagnosed with IFP, 17 had normal CSF parameters, five had slightly elevated CSF cell counts and normal or elevated CSF protein, and eight had normal CSF cell counts but elevated CSF protein. Five patients with primary headache served as controls. All samples were tested for viral pathogens by PCR and subjected to liquid chromatography tandem mass spectrometry and bioinformatics analysis and multiplex cytokine/chemokine arrays. RESULTS: All CSF samples, except those from VZV-FP patients, were negative for all tested pathogens. The protein composition of CSF samples from IFP patients with normal CSF was comparable to controls. IFP patients with elevated CSF protein showed dysregulated proteins involved in inflammatory pathways, findings which were similar to those in VZV-FP patients. Multiplex analysis revealed similarly elevated cytokine levels in the CSF of IFP patients with elevated CSF protein and VZV-FP. CONCLUSIONS: Our study revealed a subgroup of IFP patients with elevated CSF protein that showed upregulated inflammatory pathways, suggesting an inflammatory/infectious cause. However, no evidence for an inflammatory cause was found in IFP patients with normal CSF.


Asunto(s)
Parálisis de Bell , Parálisis Facial , Humanos , Parálisis Facial/etiología , Nervio Facial , Proteómica , Parálisis de Bell/complicaciones , Parálisis de Bell/diagnóstico , Herpesvirus Humano 3 , Citocinas , Líquido Cefalorraquídeo
12.
Proc Natl Acad Sci U S A ; 117(12): 6752-6761, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32144140

RESUMEN

A type of chromosome-free cell called SimCells (simple cells) has been generated from Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits. It was found that the glycolysis pathway significantly extended longevity of SimCells due to its ability to regenerate ATP and NADH/NADPH. The SimCells were able to continuously express synthetic genetic circuits for 10 d after chromosome removal. As a proof of principle, we demonstrated that SimCells can be used as a safe agent (as they cannot replicate) for bacterial therapy. SimCells were used to synthesize catechol (a potent anticancer drug) from salicylic acid to inhibit lung, brain, and soft-tissue cancer cells. SimCells represent a simplified synthetic biology chassis that can be programmed to manufacture and deliver products safely without interference from the host genome.


Asunto(s)
Antineoplásicos/farmacología , Catecoles/farmacología , Reprogramación Celular , Cupriavidus necator/genética , Escherichia coli/genética , Pseudomonas putida/genética , Biología Sintética/métodos , Proliferación Celular , Cromosomas Bacterianos , Cupriavidus necator/metabolismo , Sistemas de Liberación de Medicamentos , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Ingeniería Genética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Pseudomonas putida/metabolismo , Células Tumorales Cultivadas
13.
Proteomics ; 22(11-12): e2100196, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35275438

RESUMEN

Metformin is a common and generally the first medication prescribed for treatment of type 2 diabetes. Its mechanism involves affecting pathways that regulate glucose and lipid metabolism in metabolic cells such as that of muscle and liver cells. In spite of various studies exploring its effects, the proteome changes in adipocytes in response to metformin remains poorly understood. In this study, we performed stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic profiling to study the effects of metformin specifically on 3T3-L1 adipocytes. We define proteins that exhibited altered levels with metformin treatment, 400 of them showing statistically significant changes in our study. Our results suggest that metformin affects not only the PPAR signaling pathway, as well as glucose and lipid metabolism, but also protein folding, endoplasmic reticulum stress, negative regulation of appetite, and one-carbon folate metabolism in adipocytes. This proteomic investigation provides important insight into effects of metformin in adipocytes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Células 3T3-L1 , Adipocitos/metabolismo , Aminoácidos/metabolismo , Animales , Técnicas de Cultivo de Célula , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Marcaje Isotópico , Metformina/metabolismo , Metformina/farmacología , Ratones , Proteómica/métodos
14.
Exp Dermatol ; 31(2): 237-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34432926

RESUMEN

Psoriasis is one of the most common chronic inflammatory skin diseases and at the same time a risk factor for cardiovascular disease. Interleukin-17A (IL-17A)-mediated inflammation in psoriasis may lead to vascular dysfunction. This study aimed at investigating whether anti-inflammatory treatment by tumor necrosis factor (TNF)-α blockade alters vascular function in psoriasis patients. A total of 11 patients with psoriasis who underwent treatment with either adalimumab (n = 8) or etanercept (n = 3), 10 healthy control individuals and 14 patients with coronary artery disease (CAD) were included in this study. Treatment response was assessed using the Psoriasis Area and Severity Index (PASI) score. Endothelial reactivity and resting endothelium-dependent vascular tone were assessed by ultrasound measurement of flow-mediated dilation (FMD) and low-flow-mediated constriction (l-FMC), respectively. FMD was slightly impaired in psoriasis patients compared to healthy controls. Anti-TNF-α treatment did not significantly change FMD levels. Psoriasis patients showed a trend towards increased baseline vascular activity compared to healthy controls. Anti-TNF-α treatment significantly improved l-FMC in psoriasis patients. Noteworthy, both FMD and l-FMC in psoriasis patients were comparable to those in patients with CAD; however, an important influence of age differences between the groups or co-existent classical cardiovascular risk factors on FMD and l-FMC cannot be ruled out by our small study. The results suggest that anti-inflammatory treatment with TNF-α blockade improves vascular function in patients with psoriasis, mainly by altering baseline vascular tone. Further studies will be necessary to establish the potentially protective impact of anti-inflammatory therapy on vascular function in patients with chronic inflammatory diseases.


Asunto(s)
Psoriasis , Factor de Necrosis Tumoral alfa , Enfermedad Crónica , Endotelio Vascular , Humanos , Psoriasis/complicaciones , Psoriasis/tratamiento farmacológico , Inhibidores del Factor de Necrosis Tumoral , Vasoconstricción , Vasodilatación/fisiología
15.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430529

RESUMEN

Cofactor flavin adenine dinucleotide (FAD), a compound with flavin moiety and a derivative of riboflavin (vitamin B2), is shown to bind to Sox9 (a key transcription factor in early pancreatic development) and, subsequently, induce a large increase in markers of pancreatic development, including Ngn3 and PTF1a. Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, also binds to Sox9 and results in a similar increase in pancreatic development markers. Sox9 is known to be specifically important for pancreatic progenitors. Previously, there was no known link between FAD, PLP, or other co-factors and Sox9 for function. Thus, our findings show the mechanism by which FAD and PLP interact with Sox9 and result in the altered expression of pancreatic progenitor transcription factors involved in the pancreas development.


Asunto(s)
Flavina-Adenina Dinucleótido , Páncreas , Flavina-Adenina Dinucleótido/metabolismo , Páncreas/metabolismo , Hormonas Pancreáticas/metabolismo , Riboflavina/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfatos/metabolismo , Vitaminas/metabolismo
16.
PLoS Pathog ; 15(7): e1007987, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31356624

RESUMEN

Streptococcus pneumoniae (pneumococci) is a leading cause of severe bacterial meningitis in many countries worldwide. To characterize the repertoire of fitness and virulence factors predominantly expressed during meningitis we performed niche-specific analysis of the in vivo proteome in a mouse meningitis model, in which bacteria are directly inoculated into the cerebrospinal fluid (CSF) cisterna magna. We generated a comprehensive mass spectrometry (MS) spectra library enabling bacterial proteome analysis even in the presence of eukaryotic proteins. We recovered 200,000 pneumococci from CSF obtained from meningitis mice and by MS we identified 685 pneumococci proteins in samples from in vitro filter controls and 249 in CSF isolates. Strikingly, the regulatory two-component system ComDE and substrate-binding protein AliB of the oligopeptide transporter system were exclusively detected in pneumococci recovered from the CSF. In the mouse meningitis model, AliB-, ComDE-, or AliB-ComDE-deficiency resulted in attenuated meningeal inflammation and disease severity when compared to wild-type pneumococci indicating the crucial role of ComDE and AliB in pneumococcal meningitis. In conclusion, we show here mechanisms of pneumococcal adaptation to a defined host compartment by a proteome-based approach. Further, this study provides the basis of a promising strategy for the identification of protein antigens critical for invasive disease caused by pneumococci and other meningeal pathogens.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Portadoras/fisiología , Lipoproteínas/fisiología , Meningitis Neumocócica/microbiología , Streptococcus pneumoniae/fisiología , Streptococcus pneumoniae/patogenicidad , Factores de Virulencia/fisiología , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Genes Bacterianos , Interacciones Microbiota-Huesped/fisiología , Humanos , Lipoproteínas/deficiencia , Lipoproteínas/genética , Masculino , Meningitis Neumocócica/líquido cefalorraquídeo , Ratones , Ratones Endogámicos C57BL , Mutación , Proteómica , Regulón , Streptococcus pneumoniae/genética , Virulencia/genética , Virulencia/fisiología , Factores de Virulencia/genética
17.
Eur Arch Psychiatry Clin Neurosci ; 271(3): 527-536, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33275166

RESUMEN

Fatigue is considered a key symptom of major depressive disorder (MDD), yet the term lacks specificity. It can denote a state of increased sleepiness and lack of drive (i.e., downregulated arousal) as well as a state of high inner tension and inhibition of drive with long sleep onset latencies (i.e., upregulated arousal), the latter typically found in depression. It has been proposed to differentiate fatigue along the dimension of brain arousal. We investigated whether such stratification within a group of MDD patients would reveal a subgroup with distinct clinical features. Using an automatic classification of EEG vigilance stages, an arousal stability score was calculated for 15-min resting EEGs of 102 MDD patients with fatigue. 23.5% of the patients showed signs of hypoarousal with EEG patterns indicating drowsiness or sleep; this hypoaroused subgroup was compared with remaining patients (non-hypoaroused subgroup) concerning self-rated measures of depressive symptoms, sleepiness, and sleep. The hypoaroused subgroup scored higher on the Beck Depression Inventory items "loss of energy" (Z = - 2.13, p = 0.033; ɳ2 = 0.044, 90% CI 0.003-0.128) and "concentration difficulty" (Z = - 2.40, p = 0.017; ɳ2 = 0.056, 90% CI 0.009-0.139), and reported higher trait and state sleepiness (p < 0.05) as compared to the non-hypoaroused group. The non-hypoaroused subgroup, in contrast, reported more frequently the presence of suicidal ideation (Chi2 = 3.81, p = 0.051; ɳ2 = 0.037, 90% CI 0.0008-0.126). In this study, we found some evidence that stratifying fatigued MDD patients by arousal may lead to subgroups that are pathophysiologically and clinically more homogeneous. Brain arousal may be a worth while target in clinical research for better understanding the mechanisms underlying suicidal tendencies and to improve treatment response.


Asunto(s)
Nivel de Alerta/fisiología , Trastorno Depresivo Mayor/fisiopatología , Electroencefalografía , Fatiga/fisiopatología , Somnolencia , Ideación Suicida , Adolescente , Adulto , Anciano , Trastorno Depresivo Mayor/clasificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
18.
Nucleic Acids Res ; 47(9): 4652-4662, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30916323

RESUMEN

Cold-stress in Escherichia coli induces de novo synthesis of translation initiation factors IF1, IF2 and IF3 while ribosome synthesis and assembly slow down. Consequently, the IFs/ribosome stoichiometric ratio increases about 3-fold during the first hours of cold adaptation. The IF1 and IF3 increase plays a role in translation regulation at low temperature (cold-shock-induced translational bias) but so far no specific role could be attributed to the extra copies of IF2. In this work, we show that the extra-copies of IF2 made after cold stress are associated with immature ribosomal subunits together with at least another nine proteins involved in assembly and/or maturation of ribosomal subunits. This finding, coupled with evidence that IF2 is endowed with GTPase-associated chaperone activity that promotes refolding of denatured GFP, and the finding that two cold-sensitive IF2 mutations cause the accumulation of immature ribosomal particles, indicate that IF2 is yet another GTPase protein that participates in ribosome assembly/maturation, especially at low temperatures. Overall, these findings are instrumental in redefining the functional role of IF2, which cannot be regarded as being restricted to its well documented functions in translation initiation of bacterial mRNA.


Asunto(s)
Adaptación Fisiológica/genética , Respuesta al Choque por Frío/genética , Iniciación de la Cadena Peptídica Traduccional , Factor 2 Procariótico de Iniciación/genética , Frío/efectos adversos , Escherichia coli/genética , Escherichia coli/fisiología , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Subunidades Ribosómicas/genética , Ribosomas/genética
19.
Eur Heart J ; 41(26): 2472-2483, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-31715629

RESUMEN

AIMS: Electronic (e)-cigarettes have been marketed as a 'healthy' alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. METHODS AND RESULTS: Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. CONCLUSIONS: E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


Asunto(s)
Encéfalo , Cigarrillo Electrónico a Vapor/efectos adversos , Sistemas Electrónicos de Liberación de Nicotina , NADPH Oxidasa 2/genética , Estrés Oxidativo , Animales , Encéfalo/metabolismo , Ratones
20.
J Proteome Res ; 19(12): 4884-4900, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32991178

RESUMEN

Adipocyte differentiation is a general physiological process that is also critical for metabolic syndrome. In spite of extensive study in the past two decades, adipogenesis is a still complex cellular process that is accompanied by complicated molecular mechanisms. Here, we performed SILAC-based quantitative global proteomic profiling of 3T3-L1 adipocyte differentiation. We report protein changes to the proteome profiles, with 354 proteins exhibiting significant increase and 56 proteins showing decrease in our statistical analysis. Our results show that adipocyte differentiation is involved not only in metabolic processes by increasing TCA cycle, fatty acid synthesis, lipolysis, acetyl-CoA production, antioxidants, and electron transport, but also in nicotinamide metabolism, cristae formation, mitochondrial protein import, and Ca2+ transport into mitochondria and ER. A search for Chromosome-Centric Human Proteome Project (C-HPP) using neXtprot highlighted one protein with a protein existence uncertain (PE5) and 17 proteins as functionally uncharacterized protein existence 1 (uPE1). This study provides quantitative information on proteome changes in adipogenic differentiation, which is helpful in improving our understanding of the processes of adipogenesis.


Asunto(s)
Adipocitos , Proteómica , Células 3T3-L1 , Adipogénesis/genética , Animales , Diferenciación Celular , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA