RESUMEN
The primary objective of this study was to synthesize and characterize novel silicon-based silyl organic compounds in order to gain a deeper understanding of their potential applications and interactions with other compounds. Four new artificial silyl organic compounds were successfully synthesized: 1-O-(Trimethylsilyl)-2,3,4,6-tetra-O-acetyl-ß-d-glucopyranose (compound 1), 1-[(1,1-dimethylehtyl)diphenylsilyl]-1H-indole (compound 2), O-tert-butyldiphenylsilyl-(3-hydroxypropyl)oleate (compound 3), and 1-O-tert-Butyldiphenylsilyl-myo-inositol (compound 4). To thoroughly characterize these synthesized compounds, a combination of advanced mass spectrometric techniques was employed, including nanoparticle-assisted laser desorption/ionization mass spectrometry (NALDI-MS), Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and triple quadrupole electrospray tandem mass spectrometry (QqQ ESI-MS/MS). These analytical methods enabled the accurate identification and characterization of the synthesized silyl organic compounds, providing valuable insights into their properties and potential applications. Furthermore, the electrospray ionization-Fourier transform ion cyclotron resonance-tandem mass spectrometry (ESI-FT-ICR-MS/MS) technique facilitated the proposal of fragmentation pathways for the ionized silyl organic compounds, contributing to a more comprehensive understanding of their behavior during mass spectrometric analysis. These findings suggest that mass spectrometric techniques offer a highly effective means of investigating and characterizing naturally occurring silicon-based silyl organic compounds, with potential implications for advancing research in various fields and applications in different industries.
RESUMEN
Doppler weather radar imaging enabled the rapid recovery of the Sutter's Mill meteorite after a rare 4-kiloton of TNT-equivalent asteroid impact over the foothills of the Sierra Nevada in northern California. The recovered meteorites survived a record high-speed entry of 28.6 kilometers per second from an orbit close to that of Jupiter-family comets (Tisserand's parameter = 2.8 ± 0.3). Sutter's Mill is a regolith breccia composed of CM (Mighei)-type carbonaceous chondrite and highly reduced xenolithic materials. It exhibits considerable diversity of mineralogy, petrography, and isotope and organic chemistry, resulting from a complex formation history of the parent body surface. That diversity is quickly masked by alteration once in the terrestrial environment but will need to be considered when samples returned by missions to C-class asteroids are interpreted.