RESUMEN
Despite compelling evidence that brain structure is heritable, the evidence for the heritability of task-evoked brain function is less robust. Findings from previous studies are inconsistent possibly reflecting small samples and methodological variations. In a large national twin sample, we systematically evaluated heritability of task-evoked brain activity derived from functional magnetic resonance imaging. We used established standardised tasks to engage brain regions involved in cognitive and emotional functions. Heritability was evaluated across a conscious and nonconscious Facial Expressions of Emotion Task (FEET), selective attention Oddball Task, N-back task of working memory maintenance, and a Go-NoGo cognitive control task in a sample of Australian adult twins (N ranged from 136 to 226 participants depending on the task and pairs). Two methods for quantifying associations of heritability and brain activity were utilised; a multivariate independent component analysis (ICA) approach and a univariate brain region-of-interest (ROI) approach. Using ICA, we observed that a significant proportion of task-evoked brain activity was heritable, with estimates ranging from 23% to 26% for activity elicited by nonconscious facial emotion stimuli, 27% to 34% for N-back working memory maintenance and sustained attention, and 32% to 33% for selective attention in the Oddball task. Using the ROI approach, we found that activity of regions specifically implicated in emotion processing and selective attention showed significant heritability for three ROIs, including estimates of 33%-34% for the left and right amygdala in the nonconscious processing of sad faces and 29% in the medial superior prefrontal cortex for the Oddball task. Although both approaches show similar levels of heritability for the Nonconscious Faces and Oddball tasks, ICA results displayed a more extensive network of heritable brain function, including additional regions beyond the ROI analysis. Furthermore, multivariate twin modelling of both ICA networks and ROI activation suggested a mix of common genetic and unique environmental factors that contribute to the associations between networks/regions. Together, the results indicate a complex relationship between genetic factors and environmental interactions that ultimately give rise to neural activation underlying cognition and emotion.
Asunto(s)
Mapeo Encefálico , Encéfalo , Adulto , Humanos , Mapeo Encefálico/métodos , Australia , Encéfalo/fisiología , Emociones/fisiología , Cognición/fisiología , Imagen por Resonancia Magnética/métodosRESUMEN
OBJECTIVE: Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms. METHODS: Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy. RESULTS: CSF MTBR-tau species located within the putative "border" region and one species corresponding to the "core" region of aggregates in neurofibrillary tangles (NFTs) increased during the presymptomatic stage and decreased during the symptomatic stage. The "border" MTBR-tau species were associated with amyloid pathology and CSF p-tau; whereas the "core" MTBR-tau species were associated stronger with tau PET and CSF measures of neurodegeneration. The ratio of the border to the core species provided a continuous measure of increasing amounts that tracked clinical progression and NFTs. INTERPRETATION: Changes in CSF soluble MTBR-tau species preceded the onset of dementia, tau tangle increase, and atrophy in DIAD. The ratio of 4R-specific MTBR-tau (border) to the NFT (core) MTBR-tau species corresponds to the pathology of NFTs in DIAD and change with disease progression. The dynamics between different MTBR-tau species in the CSF may serve as a marker of tau-related disease progression and target engagement of anti-tau therapeutics. ANN NEUROL 2023;93:1158-1172.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Estudios Transversales , Proteínas tau/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Disfunción Cognitiva/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Tomografía de Emisión de Positrones/métodos , Atrofia/patología , Biomarcadores/líquido cefalorraquídeo , Progresión de la Enfermedad , Microtúbulos/metabolismo , Microtúbulos/patologíaRESUMEN
Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and CSF and is predictive of cognitive function in individuals with Alzheimer's disease. There has been limited prior work linking neurofilament light and functional connectivity, and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer's disease. Here, we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer's disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks, including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer's disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heightened total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer's disease.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Conectoma , Humanos , Estudios Transversales , Filamentos Intermedios , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cognición , Red Nerviosa/diagnóstico por imagenRESUMEN
INTRODUCTION: Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS: Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS: Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION: Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Estudios Transversales , Caracteres Sexuales , Tomografía de Emisión de Positrones , Mutación/genética , BiomarcadoresRESUMEN
INTRODUCTION: We investigated longitudinal associations between self-reported exercise and Alzheimer's disease (AD)-related biomarkers in individuals with autosomal dominant AD (ADAD) mutations. METHODS: Participants were 308 ADAD mutation carriers aged 39.7 ± 10.8 years from the Dominantly Inherited Alzheimer's Network. Weekly exercise volume was measured via questionnaire and associations with brain volume (magnetic resonance imaging), cerebrospinal fluid biomarkers, and brain amyloid beta (Aß) measured by positron emission tomography were investigated. RESULTS: Greater volume of weekly exercise at baseline was associated with slower accumulation of brain Aß at preclinical disease stages ß = -0.16 [-0.23 to -0.08], and a slower decline in multiple brain regions including hippocampal volume ß = 0.06 [0.03 to 0.08]. DISCUSSION: Exercise is associated with more favorable profiles of AD-related biomarkers in individuals with ADAD mutations. Exercise may have therapeutic potential for delaying the onset of AD; however, randomized controlled trials are vital to determine a causal relationship before a clinical recommendation of exercise is implemented. HIGHLIGHTS: Greater self-reported weekly exercise predicts slower declines in brain volume in autosomal dominant Alzheimer's disease (ADAD). Greater self-reported weekly exercise predicts slower accumulation of brain amyloid beta in ADAD. Associations varied depending on closeness to estimated symptom onset.
RESUMEN
INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.
Asunto(s)
Enfermedad de Alzheimer , Cuerpos de Lewy , alfa-Sinucleína , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , alfa-Sinucleína/líquido cefalorraquídeo , alfa-Sinucleína/genética , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Progresión de la Enfermedad , Cuerpos de Lewy/patología , MutaciónRESUMEN
INTRODUCTION: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS: Mutation position influences Aß burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aß burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.
Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Enfermedades de los Pequeños Vasos Cerebrales , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Imagen de Difusión Tensora , Imagen por Resonancia Magnética , Mutación/genética , Presenilina-1/genéticaRESUMEN
Carriers of mutations responsible for dominantly inherited Alzheimer disease provide a unique opportunity to study potential imaging biomarkers. Biomarkers based on routinely acquired clinical MR images, could supplement the extant invasive or logistically challenging) biomarker studies. We used 1104 longitudinal MR, 324 amyloid beta, and 87 tau positron emission tomography imaging sessions from 525 participants enrolled in the Dominantly Inherited Alzheimer Network Observational Study to extract novel imaging metrics representing the mean (µ) and standard deviation (σ) of standardized image intensities of T1-weighted and Fluid attenuated inversion recovery (FLAIR) MR scans. There was an exponential decrease in FLAIR-µ in mutation carriers and an increase in FLAIR and T1 signal heterogeneity (T1-σ and FLAIR-σ) as participants approached the symptom onset in both supramarginal, the right postcentral and right superior temporal gyri as well as both caudate nuclei, putamina, thalami, and amygdalae. After controlling for the effect of regional atrophy, FLAIR-µ decreased and T1-σ and FLAIR-σ increased with increasing amyloid beta and tau deposition in numerous cortical regions. In symptomatic mutation carriers and independent of the effect of regional atrophy, tau pathology demonstrated a stronger relationship with image intensity metrics, compared with amyloid pathology. We propose novel MR imaging intensity-based metrics using standard clinical T1 and FLAIR images which strongly associates with the progression of pathology in dominantly inherited Alzheimer disease. We suggest that tau pathology may be a key driver of the observed changes in this cohort of patients.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones , Biomarcadores , Atrofia , Proteínas tauRESUMEN
BACKGROUND: While previous studies have suggested that higher levels of cognitive performance may be related to greater wellbeing and resilience, little is known about the associations between neural circuits engaged by cognitive tasks and wellbeing and resilience, and whether genetics or environment contribute to these associations. METHODS: The current study consisted of 253 monozygotic and dizygotic adult twins, including a subsample of 187 early-life trauma-exposed twins, with functional Magnetic Resonance Imaging data from the TWIN-E study. Wellbeing was measured using the COMPAS-W Wellbeing Scale while resilience was defined as a higher level of positive adaptation (higher levels of wellbeing) in the presence of trauma exposure. We probed both sustained attention and working memory processes using a Continuous Performance Task in the scanner. RESULTS: We found significant negative associations between resilience and activation in the bilateral anterior insula engaged during sustained attention. Multivariate twin modelling showed that the association between resilience and the left and right insula activation was mostly driven by common genetic factors, accounting for 71% and 87% of the total phenotypic correlation between these variables, respectively. There were no significant associations between wellbeing/resilience and neural activity engaged during working memory updating. CONCLUSIONS: The findings suggest that greater resilience to trauma is associated with less activation of the anterior insula during a condition requiring sustained attention but not working memory updating. This possibly suggests a pattern of 'neural efficiency' (i.e. more efficient and/or attenuated activity) in people who may be more resilient to trauma.
Asunto(s)
Atención , Imagen por Resonancia Magnética , Adulto , Humanos , Atención/fisiología , Gemelos Dicigóticos , Memoria a Corto Plazo , Pruebas NeuropsicológicasRESUMEN
BACKGROUND: Although mental wellbeing has been linked with positive health outcomes, including longevity and improved emotional and cognitive functioning, studies examining the underlying neural mechanisms of both subjective and psychological wellbeing have been sparse. We assessed whether both forms of wellbeing are associated with neural activity engaged during positive and negative emotion processing and the extent to which this association is driven by genetics or environment. METHODS: We assessed mental wellbeing in 230 healthy adult monozygotic and dizygotic twins using a previously validated questionnaire (COMPAS-W) and undertook functional magnetic resonance imaging during a facial emotion viewing task. We used linear mixed models to analyse the association between COMPAS-W scores and emotion-elicited neural activation. Univariate twin modelling was used to evaluate heritability of each brain region. Multivariate twin modelling was used to compare twin pairs to assess the contributions of genetic and environmental factors to this association. RESULTS: Higher levels of wellbeing were associated with greater neural activity in the dorsolateral prefrontal cortex, localised in the right inferior frontal gyrus (IFG), in response to positive emotional expressions of happiness. Univariate twin modelling showed activity in the IFG to have 20% heritability. Multivariate twin modelling suggested that the association between wellbeing and positive emotion-elicited neural activity was driven by common variance from unique environment (r = 0.208) rather than shared genetics. CONCLUSIONS: Higher mental wellbeing may have a basis in greater engagement of prefrontal neural regions in response to positive emotion, and this association may be modifiable by unique life experiences.
Asunto(s)
Emociones , Imagen por Resonancia Magnética , Adulto , Humanos , Emociones/fisiología , Encéfalo/diagnóstico por imagen , Felicidad , Gemelos Dicigóticos , Mapeo Encefálico , Expresión FacialRESUMEN
The extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-ß42, amyloid-ß40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the â¼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-ß42, amyloid-ß40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.
Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Imagen por Resonancia Magnética/métodos , BiomarcadoresRESUMEN
BACKGROUND: The Dominantly Inherited Alzheimer Network (DIAN) is a longitudinal observational study that collects data on cognition, blood pressure (BP), and other variables from autosomal-dominant Alzheimer's disease mutation carriers (MCs) and non-carrier (NC) family members in early to mid-adulthood, providing a unique opportunity to evaluate BP and cognition relationships in these populations. METHOD: We examined cross-sectional and longitudinal relationships between systolic and diastolic BP and cognition in DIAN MC and NC. RESULTS: Data were available from 528 participants, who had a mean age of 38 (SD = 11) and were 42% male and 61% MCs, at a median follow-up of 2 years. Linear-multilevel models found only cross-sectional associations in the MC group between higher systolic BP and poorer performance on language (ß = -0.181 [-0.318, -0.044]), episodic memory (-0.212 [-0.375, -0.049]), and a composite cognitive measure (-0.146 [-0.276, -0.015]). In NCs, the relationship was cross-sectional only and present for language alone. DISCUSSION: Higher systolic BP was cross-sectionally but not longitudinally associated with poorer cognition, particularly in MCs. BP may influence cognition gradually, but further longitudinal research is needed.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Adulto , Femenino , Estudios Transversales , Presión Sanguínea , Cognición , Mutación/genéticaRESUMEN
BACKGROUND: Glial fibrillary acidic protein (GFAP) is a promising candidate blood-based biomarker for Alzheimer's disease (AD) diagnosis and prognostication. The timing of its disease-associated changes, its clinical correlates, and biofluid-type dependency will influence its clinical utility. METHODS: We evaluated plasma, serum, and cerebrospinal fluid (CSF) GFAP in families with autosomal dominant AD (ADAD), leveraging the predictable age at symptom onset to determine changes by stage of disease. RESULTS: Plasma GFAP elevations appear a decade before expected symptom onset, after amyloid beta (Aß) accumulation and prior to neurodegeneration and cognitive decline. Plasma GFAP distinguished Aß-positive from Aß-negative ADAD participants and showed a stronger relationship with Aß load in asymptomatic than symptomatic ADAD. Higher plasma GFAP was associated with the degree and rate of neurodegeneration and cognitive impairment. Serum GFAP showed similar relationships, but these were less pronounced for CSF GFAP. CONCLUSION: Our findings support a role for plasma GFAP as a clinical biomarker of Aß-related astrocyte reactivity that is associated with cognitive decline and neurodegeneration. HIGHLIGHTS: Plasma glial fibrillary acidic protein (GFAP) elevations appear a decade before expected symptom onset in autosomal dominant Alzheimer's disease (ADAD). Plasma GFAP was associated to amyloid positivity in asymptomatic ADAD. Plasma GFAP increased with clinical severity and predicted disease progression. Plasma and serum GFAP carried similar information in ADAD, while cerebrospinal fluid GFAP did not.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquídeo , Cognición , Proteína Ácida Fibrilar de la Glía , Tomografía de Emisión de Positrones , Proteínas tau/líquido cefalorraquídeoRESUMEN
INTRODUCTION: As knowledge about neurological examination findings in autosomal dominant Alzheimer disease (ADAD) is incomplete, we aimed to determine the frequency and significance of neurological examination findings in ADAD. METHODS: Frequencies of neurological examination findings were compared between symptomatic mutation carriers and non mutation carriers from the Dominantly Inherited Alzheimer Network (DIAN) to define AD neurological examination findings. AD neurological examination findings were analyzed regarding frequency, association with and predictive value regarding cognitive decline, and association with brain atrophy in symptomatic mutation carriers. RESULTS: AD neurological examination findings included abnormal deep tendon reflexes, gait disturbance, pathological cranial nerve examination findings, tremor, abnormal finger to nose and heel to shin testing, and compromised motor strength. The frequency of AD neurological examination findings was 65.1%. Cross-sectionally, mutation carriers with AD neurological examination findings showed a more than two-fold faster cognitive decline and had greater parieto-temporal atrophy, including hippocampal atrophy. Longitudinally, AD neurological examination findings predicted a significantly greater decline over time. DISCUSSION: ADAD features a distinct pattern of neurological examination findings that is useful to estimate prognosis and may inform clinical care and therapeutic trial designs.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/genética , Examen NeurológicoRESUMEN
INTRODUCTION: As the number of biomarkers used to study Alzheimer's disease (AD) continues to increase, it is important to understand the utility of any given biomarker, as well as what additional information a biomarker provides when compared to others. METHODS: We used hierarchical clustering to group 19 cross-sectional biomarkers in autosomal dominant AD. Feature selection identified biomarkers that were the strongest predictors of mutation status and estimated years from symptom onset (EYO). Biomarkers identified included clinical assessments, neuroimaging, cerebrospinal fluid amyloid, and tau, and emerging biomarkers of neuronal integrity and inflammation. RESULTS: Three primary clusters were identified: neurodegeneration, amyloid/tau, and emerging biomarkers. Feature selection identified amyloid and tau measures as the primary predictors of mutation status and EYO. Emerging biomarkers of neuronal integrity and inflammation were relatively weak predictors. DISCUSSION: These results provide novel insight into our understanding of the relationships among biomarkers and the staging of biomarkers based on disease progression.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas Amiloidogénicas , Biomarcadores/líquido cefalorraquídeo , Estudios Transversales , Inflamación , Proteínas tau/genética , Proteínas tau/líquido cefalorraquídeoRESUMEN
Prior studies of aging and Alzheimer disease have evaluated resting state functional connectivity (FC) using either seed-based correlation (SBC) or independent component analysis (ICA), with a focus on particular functional systems. SBC and ICA both are insensitive to differences in signal amplitude. At the same time, accumulating evidence indicates that the amplitude of spontaneous BOLD signal fluctuations is physiologically meaningful. We systematically compared covariance-based FC, which is sensitive to amplitude, vs. correlation-based FC, which is not, in affected individuals and controls drawn from two cohorts of participants including autosomal dominant Alzheimer disease (ADAD), late onset Alzheimer disease (LOAD), and age-matched controls. Functional connectivity was computed over 222 regions of interest and group differences were evaluated in terms of components projected onto a space of lower dimension. Our principal observations are: (1) Aging is associated with global loss of resting state fMRI signal amplitude that is approximately uniform across resting state networks. (2) Thus, covariance FC measures decrease with age whereas correlation FC is relatively preserved in healthy aging. (3) In contrast, symptomatic ADAD and LOAD both lead to loss of spontaneous activity amplitude as well as severely degraded correlation structure. These results demonstrate a double dissociation between age vs. Alzheimer disease and the amplitude vs. correlation structure of resting state BOLD signals. Modeling results suggest that the AD-associated loss of correlation structure is attributable to a relative increase in the fraction of locally restricted as opposed to widely shared variance.
Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Saludable , Envejecimiento , Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/fisiología , Humanos , Imagen por Resonancia Magnética/métodosRESUMEN
BACKGROUND: Hyperphosphorylation of tau leads to conformational changes that destabilize microtubules and hinder axonal transport in Alzheimer's disease (AD). However, it remains unknown whether white matter (WM) decline due to AD is associated with specific Tau phosphorylation site(s). METHODS: In autosomal dominant AD (ADAD) mutation carriers (MC) and non-carriers (NC) we compared cerebrospinal fluid (CSF) phosphorylation at tau sites (pT217, pT181, pS202, and pT205) and total tau with WM measures, as derived from diffusion tensor imaging (DTI), and cognition. A WM composite metric, derived from a principal component analysis, was used to identify spatial decline seen in ADAD. RESULTS: The WM composite explained over 70% of the variance in MC. WM regions that strongly contributed to the spatial topography were located in callosal and cingulate regions. Loss of integrity within the WM composite was strongly associated with AD progression in MC as defined by the estimated years to onset (EYO) and cognitive decline. A linear regression demonstrated that amyloid, gray matter atrophy and phosphorylation at CSF tau site pT205 each uniquely explained a reduction in the WM composite within MC that was independent of vascular changes (white matter hyperintensities), and age. Hyperphosphorylation of CSF tau at other sites and total tau did not significantly predict WM composite loss. CONCLUSIONS: We identified a site-specific relationship between CSF phosphorylated tau and WM decline within MC. The presence of both amyloid deposition and Tau phosphorylation at pT205 were associated with WM composite loss. These findings highlight a primary AD-specific mechanism for WM dysfunction that is tightly coupled to symptom manifestation and cognitive decline.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Sustancia Blanca , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico por imagen , Imagen de Difusión Tensora , Humanos , Fosforilación , Sustancia Blanca/metabolismo , Proteínas tau/metabolismoRESUMEN
The Alzheimer's Association International Conference held its sixth Satellite Symposium in Sydney, Australia in 2019, highlighting the leadership of Australian researchers in advancing the understanding of and treatment developments for Alzheimer's disease (AD) and other dementias. This leadership includes the Australian Imaging, Biomarker, and Lifestyle Flagship Study of Ageing (AIBL), which has fueled the identification and development of many biomarkers and novel therapeutics. Two multimodal lifestyle intervention studies have been launched in Australia; and Australian researchers have played leadership roles in other global studies in diverse populations. Australian researchers have also played an instrumental role in efforts to understand mechanisms underlying vascular contributions to cognitive impairment and dementia; and through the Women's Healthy Aging Project have elucidated hormonal and other factors that contribute to the increased risk of AD in women. Alleviating the behavioral and psychological symptoms of dementia has also been a strong research and clinical focus in Australia.
Asunto(s)
Envejecimiento/fisiología , Enfermedad de Alzheimer/epidemiología , Investigación Biomédica , Progresión de la Enfermedad , Síntomas Prodrómicos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/tratamiento farmacológico , Australia/epidemiología , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/tratamiento farmacológico , Humanos , Estilo de Vida , Tomografía de Emisión de PositronesRESUMEN
As prevention trials advance with autosomal dominant Alzheimer disease (ADAD) participants, understanding the similarities and differences between ADAD and "sporadic" late-onset AD (LOAD) is critical to determine generalizability of findings between these cohorts. Cognitive trajectories of ADAD mutation carriers (MCs) and autopsy-confirmed LOAD individuals were compared to address this question. Longitudinal rates of change on cognitive measures were compared in ADAD MCs (n = 310) and autopsy-confirmed LOAD participants (n = 163) before and after symptom onset (estimated/observed). LOAD participants declined more rapidly in the presymptomatic (preclinical) period and performed more poorly at symptom onset than ADAD participants on a cognitive composite. After symptom onset, however, the younger ADAD MCs declined more rapidly. The similar but not identical cognitive trajectories (declining but at different rates) for ADAD and LOAD suggest common AD pathologies but with some differences.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva/fisiopatologíaRESUMEN
Background: Bipolar disorder is a highly heritable psychiatric condition for which specific genetic factors remain largely unknown. In the present study, we used combined whole-exome sequencing and linkage analysis to identify risk loci and dissect the contribution of common and rare variants in families with a high density of illness. Methods: Overall, 117 participants from 15 Australian extended families with bipolar disorder (72 with affective disorder, including 50 with bipolar disorder type I or II, 13 with schizoaffective disorder-manic type and 9 with recurrent unipolar disorder) underwent whole-exome sequencing. We performed genome-wide linkage analysis using MERLIN and conditional linkage analysis using LAMP. We assessed the contribution of potentially functional rare variants using a genebased segregation test. Results: We identified a significant linkage peak on chromosome 10q11-q21 (maximal single nucleotide polymorphism = rs10761725; exponential logarithm of the odds [LODexp] = 3.03; empirical p = 0.046). The linkage interval spanned 36 protein-coding genes, including a gene associated with bipolar disorder, ankyrin 3 (ANK3). Conditional linkage analysis showed that common ANK3 risk variants previously identified in genome-wide association studies - or variants in linkage disequilibrium with those variants - did not explain the linkage signal (rs10994397 LOD = 0.63; rs9804190 LOD = 0.04). A family-based segregation test with 34 rare variants from 14 genes under the linkage interval suggested rare variant contributions of 3 brain-expressed genes: NRBF2 (p = 0.005), PCDH15 (p = 0.002) and ANK3 (p = 0.014). Limitations: We did not examine non-coding variants, but they may explain the remaining linkage signal. Conclusion: Combining family-based linkage analysis with next-generation sequencing data is effective for identifying putative disease genes and specific risk variants in complex disorders. We identified rare missense variants in ANK3, PCDH15 and NRBF2 that could confer disease risk, providing valuable targets for functional characterization.