Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharmacol Rev ; 75(2): 263-308, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549866

RESUMEN

Lysine-selective molecular tweezers (MTs) are supramolecular host molecules displaying a remarkably broad spectrum of biologic activities. MTs act as inhibitors of the self-assembly and toxicity of amyloidogenic proteins using a unique mechanism. They destroy viral membranes and inhibit infection by enveloped viruses, such as HIV-1 and SARS-CoV-2, by mechanisms unrelated to their action on protein self-assembly. They also disrupt biofilm of Gram-positive bacteria. The efficacy and safety of MTs have been demonstrated in vitro, in cell culture, and in vivo, suggesting that these versatile compounds are attractive therapeutic candidates for various diseases, infections, and injuries. A lead compound called CLR01 has been shown to inhibit the aggregation of various amyloidogenic proteins, facilitate their clearance in vivo, prevent infection by multiple viruses, display potent anti-biofilm activity, and have a high safety margin in animal models. The inhibitory effect of CLR01 against amyloidogenic proteins is highly specific to abnormal self-assembly of amyloidogenic proteins with no disruption of normal mammalian biologic processes at the doses needed for inhibition. Therapeutic effects of CLR01 have been demonstrated in animal models of proteinopathies, lysosomal-storage diseases, and spinal-cord injury. Here we review the activity and mechanisms of action of these intriguing compounds and discuss future research directions. SIGNIFICANCE STATEMENT: Molecular tweezers are supramolecular host molecules with broad biological applications, including inhibition of abnormal protein aggregation, facilitation of lysosomal clearance of toxic aggregates, disruption of viral membranes, and interference of biofilm formation by Gram-positive bacteria. This review discusses the molecular and cellular mechanisms of action of the molecular tweezers, including the discovery of distinct mechanisms acting in vitro and in vivo, and the application of these compounds in multiple preclinical disease models.


Asunto(s)
Productos Biológicos , COVID-19 , Animales , Organofosfatos/farmacología , SARS-CoV-2 , Proteínas Amiloidogénicas , Mamíferos
2.
Chemistry ; : e202401542, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958349

RESUMEN

Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.

3.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675584

RESUMEN

To understand the biological relevance and mode of action of artificial protein ligands, crystal structures with their protein targets are essential. Here, we describe and investigate all known crystal structures that contain a so-called "molecular tweezer" or one of its derivatives with an attached natural ligand on the respective target protein. The aromatic ring system of these compounds is able to include lysine and arginine side chains, supported by one or two phosphate groups that are attached to the half-moon-shaped molecule. Due to their marked preference for basic amino acids and the fully reversible binding mode, molecular tweezers are able to counteract pathologic protein aggregation and are currently being developed as disease-modifying therapies against neurodegenerative diseases such as Alzheimer's and Parkinson's disease. We analyzed the corresponding crystal structures with 14-3-3 proteins in complex with mono- and diphosphate tweezers. Furthermore, we solved crystal structures of two different tweezer variants in complex with the enzyme Δ1-Pyrroline-5-carboxyl-dehydrogenase (P5CDH) and found that the tweezers are bound to a lysine and methionine side chain, respectively. The different binding modes and their implications for affinity and specificity are discussed, as well as the general problems in crystallizing protein complexes with artificial ligands.


Asunto(s)
Unión Proteica , Cristalografía por Rayos X , Ligandos , Humanos , Modelos Moleculares , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Sitios de Unión , Proteínas/química , Conformación Proteica
4.
Angew Chem Int Ed Engl ; 63(12): e202402244, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38372496

RESUMEN

Günter Wulff, internationally well known for his invention of Molecular Imprinting, passed away on December 11, 2023 in Erkrath-Hochdahl, Germany, not far from the University of Düsseldorf, where he made his greatest discoveries. A passionate researcher and deep conceptual thinker, he greatly advanced our understanding of polymer chemistry.

5.
J Am Chem Soc ; 145(28): 15251-15264, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37392180

RESUMEN

Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.


Asunto(s)
Lisina , Proteínas Asociadas a Microtúbulos , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Lisina/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/química , Microtúbulos/metabolismo
6.
Chembiochem ; 24(7): e202200760, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36652672

RESUMEN

The aggregation of amyloid-ß 42 (Aß42) is directly related to the pathogenesis of Alzheimer's disease. Here, we have investigated the early stages of the aggregation process, during which most of the cytotoxic species are formed. Aß42 aggregation kinetics, characterized by the quantification of Aß42 monomer consumption, were tracked by real-time solution NMR spectroscopy (RT-NMR) allowing the impact that low-molecular-weight (LMW) inhibitors and modulators exert on the aggregation process to be analysed. Distinct differences in the Aß42 kinetic profiles were apparent and were further investigated kinetically and structurally by using thioflavin T (ThT) and transmission electron microscopy (TEM), respectively. LMW inhibitors were shown to have a differential impact on early-state aggregation. Insight provided here could direct future therapeutic design based on kinetic profiling of the process of fibril formation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Cinética , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Fragmentos de Péptidos/química
7.
Biomacromolecules ; 24(8): 3666-3679, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37507377

RESUMEN

Survivin, a well-known member of the inhibitor of apoptosis protein family, is upregulated in many cancer cells, which is associated with resistance to chemotherapy. To circumvent this, inhibitors are currently being developed to interfere with the nuclear export of survivin by targeting its protein-protein interaction (PPI) with the export receptor CRM1. Here, we combine for the first time a supramolecular tweezer motif, sequence-defined macromolecular scaffolds, and ultrasmall Au nanoparticles (us-AuNPs) to tailor a high avidity inhibitor targeting the survivin-CRM1 interaction. A series of biophysical and biochemical experiments, including surface plasmon resonance measurements and their multivalent evaluation by EVILFIT, reveal that for divalent macromolecular constructs with increasing linker distance, the longest linkers show superior affinity, slower dissociation, as well as more efficient PPI inhibition. As a drawback, these macromolecular tweezer conjugates do not enter cells, a critical feature for potential applications. The problem is solved by immobilizing the tweezer conjugates onto us-AuNPs, which enables efficient transport into HeLa cells. On the nanoparticles, the tweezer valency rises from 2 to 16 and produces a 100-fold avidity increase. The hierarchical combination of different scaffolds and controlled multivalent presentation of supramolecular binders was the key to the development of highly efficient survivin-CRM1 competitors. This concept may also be useful for other PPIs.


Asunto(s)
Oro , Nanopartículas del Metal , Humanos , Survivin , Células HeLa , Proteínas Inhibidoras de la Apoptosis/metabolismo , Sustancias Macromoleculares/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo
8.
Chembiochem ; 23(2): e202100502, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34758178

RESUMEN

Methylated free amino acids are an important class of targets for host-guest chemistry that have recognition properties distinct from those of methylated peptides and proteins. We present comparative binding studies for three different host classes that are each studied with multiple methylated arginines and lysines to determine fundamental structure-function relationships. The hosts studied are all anionic and include three calixarenes, two acyclic cucurbiturils, and two other cleft-like hosts, a clip and a tweezer. We determined the binding association constants for a panel of methylated amino acids using indicator displacement assays. The acyclic cucurbiturils display stronger binding to the methylated amino acids, and some unique patterns of selectivity. The two other cleft-like hosts follow two different trends, shallow host (clip) following similar trends to the calixarenes, and the other more closed host (tweezer) binding certain less-methylated amino acids stronger than their methylated counterparts. Molecular modelling sheds some light on the different preferences of the various hosts. The results identify hosts with new selectivities and with affinities in a range that could be useful for biomedical applications. The overall selectivity patterns are explained by a common framework that considers the geometry, depth of binding pockets, and functional group participation across all host classes.


Asunto(s)
Aminoácidos/metabolismo , Arginina/metabolismo , Lisina/metabolismo , Metilación , Unión Proteica
9.
Biomacromolecules ; 23(11): 4504-4518, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36200481

RESUMEN

Many natural proteins contain flexible loops utilizing well-defined complementary surface regions of their interacting partners and usually undergo major structural rearrangements to allow perfect binding. The molecular recognition of such flexible structures is still highly challenging due to the inherent conformational dynamics. Notably, protein-protein interactions are on the other hand characterized by a multivalent display of complementary binding partners to enhance molecular affinity and specificity. Imitating this natural concept, we here report the rational design of advanced multivalent supramolecular tweezers that allow addressing two lysine and arginine clusters on a flexible protein surface loop. The protease Taspase 1, which is involved in cancer development, carries a basic bipartite nuclear localization signal (NLS) and thus interacts with Importin α, a prerequisite for proteolytic activation. Newly established synthesis routes enabled us to covalently fuse several tweezer molecules into multivalent NLS ligands. The resulting bi- up to pentavalent constructs were then systematically compared in comprehensive biochemical assays. In this series, the stepwise increase in valency was robustly reflected by the ligands' gradually enhanced potency to disrupt the interaction of Taspase 1 with Importin α, correlated with both higher binding affinity and inhibition of proteolytic activity.


Asunto(s)
Núcleo Celular , alfa Carioferinas , alfa Carioferinas/química , alfa Carioferinas/metabolismo , Secuencia de Aminoácidos , Ligandos , Unión Proteica , Núcleo Celular/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas/metabolismo , Péptido Hidrolasas/metabolismo
10.
J Am Chem Soc ; 143(34): 13495-13500, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427424

RESUMEN

Rational design of protein-protein interaction (PPI) inhibitors is challenging. Connecting a general supramolecular protein binder with a specific peptidic ligand provides a novel conceptual approach. Thus, lysine-specific molecular tweezers were conjugated to a peptide-based 14-3-3 ligand and produced a strong PPI inhibitor with 100-fold elevated protein affinity. X-ray crystal structure elucidation of this supramolecular directed assembly provides unique molecular insight into the binding mode and fully aligns with Molecular Dynamics (MD) simulations. This new supramolecular chemical biology concept opens the path to novel chemical tools for studying PPIs.


Asunto(s)
Proteínas 14-3-3/metabolismo , Ligandos , Proteínas 14-3-3/química , Sitios de Unión , Colorantes Fluorescentes/química , Humanos , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/metabolismo , Mapas de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Termodinámica
11.
Bioorg Med Chem Lett ; 38: 127872, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33636307

RESUMEN

A series of novel (R)-6,6a,7,8,9,10-hexahydro-5H-pyrazino[1,2-a][1,n]naphthyridines were identified as potent and selective agonists of the 5-HT2C receptor. Optimizations performed on a previously reported series of racemic tetrahydroquinoline-based tricyclic amines, delivered an advanced drug lead, (R)-4-(3,3,3-trifluoropropyl)-6,6a,7,8,9,10-hexahydro-5H-pyrazino[1,2-a][1,8]naphthyridine, which displayed excellent in vitro and in vivo pharmacological profiles.


Asunto(s)
Receptor de Serotonina 5-HT2C/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Relación Dosis-Respuesta a Droga , Humanos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Ratas , Agonistas del Receptor de Serotonina 5-HT2/síntesis química , Agonistas del Receptor de Serotonina 5-HT2/química , Relación Estructura-Actividad
12.
Mol Ther ; 28(4): 1167-1176, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32087148

RESUMEN

Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid ß progressively aggregate in the brain. The amyloid deposits mostly build up in neuronal cell bodies concomitantly with neurodegeneration. Treating MPS-IIIA mice with CLR01, a "molecular tweezer" that acts as a broad-spectrum inhibitor of amyloid protein self-assembly reduced lysosomal enlargement and re-activates autophagy flux. Restoration of the ALP was associated with reduced neuroinflammation and amelioration of memory deficits. Together, these data provide evidence that brain deposition of amyloid proteins plays a gain of neurotoxic function in a severe LSD by affecting the ALP and identify CLR01 as new potent drug candidate for MPS-IIIA and likely for other LSDs.


Asunto(s)
Autofagia/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/administración & dosificación , Mucopolisacaridosis III/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Organofosfatos/administración & dosificación , Amiloide/antagonistas & inhibidores , Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Hidrocarburos Aromáticos con Puentes/farmacología , Cuerpo Celular/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Mucopolisacaridosis III/complicaciones , Mucopolisacaridosis III/metabolismo , Enfermedades Neurodegenerativas/etiología , Organofosfatos/farmacología , Resultado del Tratamiento
13.
J Biol Chem ; 294(10): 3501-3513, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30602569

RESUMEN

Mutations in superoxide dismutase 1 (SOD1) cause 15-20% of familial amyotrophic lateral sclerosis (fALS) cases. The resulting amino acid substitutions destabilize SOD1's protein structure, leading to its self-assembly into neurotoxic oligomers and aggregates, a process hypothesized to cause the characteristic motor-neuron degeneration in affected individuals. Currently, effective disease-modifying therapy is not available for ALS. Molecular tweezers prevent formation of toxic protein assemblies, yet their protective action has not been tested previously on SOD1 or in the context of ALS. Here, we tested the molecular tweezer CLR01-a broad-spectrum inhibitor of the self-assembly and toxicity of amyloid proteins-as a potential therapeutic agent for ALS. Using recombinant WT and mutant SOD1, we found that CLR01 inhibited the aggregation of all tested SOD1 forms in vitro Next, we examined whether CLR01 could prevent the formation of misfolded SOD1 in the G93A-SOD1 mouse model of ALS and whether such inhibition would have a beneficial therapeutic effect. CLR01 treatment decreased misfolded SOD1 in the spinal cord significantly. However, these histological findings did not correlate with improvement of the disease phenotype. A small, dose-dependent decrease in disease duration was found in CLR01-treated mice, relative to vehicle-treated animals, yet motor function did not improve in any of the treatment groups. These results demonstrate that CLR01 can inhibit SOD1 misfolding and aggregation both in vitro and in vivo, but raise the question whether such inhibition is sufficient for achieving a therapeutic effect. Additional studies in other less aggressive ALS models may be needed to determine the therapeutic potential of this approach.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Hidrocarburos Aromáticos con Puentes/farmacología , Mutación , Organofosfatos/farmacología , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Sitios de Unión , Peso Corporal/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/metabolismo , Modelos Animales de Enfermedad , Ratones , Fuerza Muscular/efectos de los fármacos , Organofosfatos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Superóxido Dismutasa-1/metabolismo , Análisis de Supervivencia
14.
J Am Chem Soc ; 142(40): 17024-17038, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32926779

RESUMEN

Broad-spectrum antivirals are powerful weapons against dangerous viruses where no specific therapy exists, as in the case of the ongoing SARS-CoV-2 pandemic. We discovered that a lysine- and arginine-specific supramolecular ligand (CLR01) destroys enveloped viruses, including HIV, Ebola, and Zika virus, and remodels amyloid fibrils in semen that promote viral infection. Yet, it is unknown how CLR01 exerts these two distinct therapeutic activities. Here, we delineate a novel mechanism of antiviral activity by studying the activity of tweezer variants: the "phosphate tweezer" CLR01, a "carboxylate tweezer" CLR05, and a "phosphate clip" PC. Lysine complexation inside the tweezer cavity is needed to antagonize amyloidogenesis and is only achieved by CLR01. Importantly, CLR01 and CLR05 but not PC form closed inclusion complexes with lipid head groups of viral membranes, thereby altering lipid orientation and increasing surface tension. This process disrupts viral envelopes and diminishes infectivity but leaves cellular membranes intact. Consequently, CLR01 and CLR05 display broad antiviral activity against all enveloped viruses tested, including herpesviruses, Measles virus, influenza, and SARS-CoV-2. Based on our mechanistic insights, we potentiated the antiviral, membrane-disrupting activity of CLR01 by introducing aliphatic ester arms into each phosphate group to act as lipid anchors that promote membrane targeting. The most potent ester modifications harbored unbranched C4 units, which engendered tweezers that were approximately one order of magnitude more effective than CLR01 and nontoxic. Thus, we establish the mechanistic basis of viral envelope disruption by specific tweezers and establish a new class of potential broad-spectrum antivirals with enhanced activity.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Organofosfatos/farmacología , Proteínas del Envoltorio Viral/efectos de los fármacos , Fosfatasa Ácida/química , Fosfatasa Ácida/metabolismo , Amiloide/antagonistas & inhibidores , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Arginina/química , Betacoronavirus/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/química , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/virología , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Humanos , Lípidos/química , Lisina/química , Espectroscopía de Resonancia Magnética , Organofosfatos/química , SARS-CoV-2 , Proteínas de Secreción de la Vesícula Seminal/química , Proteínas de Secreción de la Vesícula Seminal/metabolismo , Relación Estructura-Actividad , Proteínas del Envoltorio Viral/metabolismo , Virus Zika/efectos de los fármacos
15.
Bioorg Med Chem Lett ; 30(5): 126929, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31952960

RESUMEN

A series of potential new 5-HT2 receptor scaffolds based on a simplification of the clinically studied, 5-HT2CR agonist vabicaserin, were designed. An in vivo feeding assay early in our screening process played an instrumental part in the lead identification process, leading us to focus on a 6,5,7-tricyclic scaffold. A subsequent early SAR investigation provided potent agonists of the 5-HT2C receptor that were highly selective in both functional and binding assays, had good rat PK properties and that significantly reduced acute food intake in the rat.


Asunto(s)
Benzodiazepinas/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Receptor de Serotonina 5-HT2C/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , Benzodiazepinas/síntesis química , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacocinética , Perros , Descubrimiento de Drogas , Estabilidad de Medicamentos , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Humanos , Macaca fascicularis , Masculino , Ratones , Microsomas/metabolismo , Estructura Molecular , Ratas Sprague-Dawley , Agonistas del Receptor de Serotonina 5-HT2/síntesis química , Agonistas del Receptor de Serotonina 5-HT2/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacocinética , Relación Estructura-Actividad
16.
Chemistry ; 25(42): 9827-9833, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31141233

RESUMEN

Oncogenic Ras mutations occur in more than 30 % of human cancers. K-Ras4B is the most frequently mutated isoform of Ras proteins. Development of effective K-Ras4B inhibitors has been challenging, hence new approaches to inhibit this oncogenic protein are urgently required. The polybasic domain of K-Ras4B with its stretch of lysine residues is essential for its plasma membrane targeting and localization. Employing CD and fluorescence spectroscopy, confocal fluorescence, and atomic force microscopy we show that the molecular tweezer CLR01 is able to efficiently bind to the lysine stretch in the polybasic domain of K-Ras4B, resulting in dissociation of the K-Ras4B protein from the lipid membrane and disintegration of K-Ras4B nanoclusters in the lipid bilayer. These results suggest that targeting of the polybasic domain of K-Ras4B by properly designed tweezers might represent an effective strategy for inactivation of K-Ras4B signaling.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/química , Membrana Celular/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Organofosfatos/química , Proteínas Proto-Oncogénicas p21(ras)/química , Simulación por Computador , Humanos , Mutación , Nanoestructuras/química , Conformación Proteica , Termodinámica
17.
Chemistry ; 24(44): 11332-11343, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30015416

RESUMEN

A new synthetic access to molecular tweezers with one or two aliphatic phosphate ester groups in the central benzene spacer-unit is presented. Alkynyl ester groups offer the prospect to attach additional functional units by click chemistry and greatly broaden the scope of these tools for chemical biology. We present two alternative strategies: the trichloroacetonitrile method involves activation of only one OH group of each phosphoric acid substituent by way of trichloroacetimidate intermediates and subsequent introduction of an aliphatic ester alcohol moiety. The method is versatile, robust and combines simple workup with high yields. Mono- and disubstituted novel host structures are thus accessible in a convenient way. Alternatively, the phosphoramidite strategy activates the hydroquinone precursor by way of phosphoramidite intermediates and couples the desired ester alcohols followed by mild oxidation to the desired phosphate esters. Each step of the synthesis is carried out at very mild conditions and allows to combine sensitive host candidates and recognition elements. After neutralization of the phosphoric acids to water-soluble tri- and tetra-anions the cavities of the new tweezer derivatives are open to bind lysine and arginine as well as peptidic guests. The concept of introducing clickable alkynyl phosphates to free OH groups may be transferred to other major macrocyclic host classes to introduce additional recognition elements, biomolecules or fluorescence labels.

19.
J Am Chem Soc ; 139(45): 16256-16263, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29039919

RESUMEN

Protein regions that are involved in protein-protein interactions (PPIs) very often display a high degree of intrinsic disorder, which is reduced during the recognition process. A prime example is binding of the rigid 14-3-3 adapter proteins to their numerous partner proteins, whose recognition motifs undergo an extensive disorder-to-order transition. In this context, it is highly desirable to control this entropy-costly process using tailored stabilizing agents. This study reveals how the molecular tweezer CLR01 tunes the 14-3-3/Cdc25CpS216 protein-protein interaction. Protein crystallography, biophysical affinity determination and biomolecular simulations unanimously deliver a remarkable finding: a supramolecular "Janus" ligand can bind simultaneously to a flexible peptidic PPI recognition motif and to a well-structured adapter protein. This binding fills a gap in the protein-protein interface, "freezes" one of the conformational states of the intrinsically disordered Cdc25C protein partner and enhances the apparent affinity of the interaction. This is the first structural and functional proof of a supramolecular ligand targeting a PPI interface and stabilizing the binding of an intrinsically disordered recognition motif to a rigid partner protein.


Asunto(s)
Proteínas 14-3-3/química , Entropía , Proteínas Intrínsecamente Desordenadas/química , Ligandos , Fosfatasas cdc25/química , Proteínas 14-3-3/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Moleculares , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Estabilidad Proteica , Fosfatasas cdc25/metabolismo
20.
J Am Chem Soc ; 139(16): 5640-5643, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-28406616

RESUMEN

Huntington's disease is a neurodegenerative disorder associated with the expansion of the polyglutamine tract in the exon-1 domain of the huntingtin protein (htte1). Above a threshold of 37 glutamine residues, htte1 starts to aggregate in a nucleation-dependent manner. A 17-residue N-terminal fragment of htte1 (N17) has been suggested to play a crucial role in modulating the aggregation propensity and toxicity of htte1. Here we identify N17 as a potential target for novel therapeutic intervention using the molecular tweezer CLR01. A combination of biochemical experiments and computer simulations shows that binding of CLR01 induces structural rearrangements within the htte1 monomer and inhibits htte1 aggregation, underpinning the key role of N17 in modulating htte1 toxicity.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/farmacología , Proteína Huntingtina/antagonistas & inhibidores , Organofosfatos/farmacología , Hidrocarburos Aromáticos con Puentes/química , Exones , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Estructura Molecular , Organofosfatos/química , Agregado de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA