RESUMEN
Anticoagulant rodenticides (ARs) are used globally to control rodent pest infestations in both urban and agricultural settings. It is well documented that non-target wildlife, including predatory birds, are at risk for secondary anticoagulant exposure and toxicosis through the prey they consume. However, there have been no large-scale studies of AR exposure in raptors in Ontario, Canada since new Health Canada legislation was implemented in 2013 in an attempt to limit exposure in non-target wildlife. Our objective was to measure levels of ARs in wild raptors in southern Ontario to assess their exposure. We collected liver samples from 133 raptors representing 17 species submitted to the Canadian Wildlife Health Cooperative (CWHC) in Ontario, Canada, between 2017 and 2019. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantitatively assess the level of exposure to 14 first- and second-generation ARs. Detectable levels of one or more ARs were found in 82 of 133 (62%) tested raptors, representing 12 species. The most commonly detected ARs were bromadiolone (54/133), difethialone (40/133), and brodifacoum (33/133). Of AR-positive birds, 34/82 (42%) contained residues of multiple (> 1) anticoagulant compounds. Our results indicate that AR exposure is common in raptors living in southern Ontario, Canada. Our finding that brodifacoum, difethialone, and bromadiolone were observed alone or in combination with one another in the majority of our sampled raptors indicates that legislative changes in Canada may not be protecting non-target wildlife as intended.
Asunto(s)
4-Hidroxicumarinas , Rapaces , Rodenticidas , 4-Hidroxicumarinas/análisis , Animales , Anticoagulantes/análisis , Aves , Cromatografía Liquida , Ontario , Rodenticidas/análisis , Espectrometría de Masas en TándemRESUMEN
We compared inductively coupled plasma-mass spectrometry (ICP-MS) test results for the analysis of heavy metals (As, Ba, Cd, Hg, Pb, and Se) in pet foods and routine veterinary diagnostic specimens using intralaboratory and interlaboratory comparisons. Four laboratories, 1 principal laboratory and 3 collaborating laboratories, conducted instrument comparison (limit of detection [LOD], limit of quantification [LOQ], and linear dynamic range [LDR] on 24 data sets), in-house method comparison (accuracy and precision on 120 data sets), and interlaboratory comparison (reproducibility on 528 data sets using Horwitz equation analysis). Matrices tested included 2 types of pet food jerky treats (chicken and sweet potato), bovine blood, and bovine liver and kidney. The instrument comparison study confirmed that ICP-MS provided the sensitivity necessary for the analysis of all heavy metals tested at concentrations below the level of concern for routine diagnostic testing. The "in-house" method comparison samples, spiked at low (0.04 µg/g), medium (0.4 µg/g), and high (8.0 µg/g; note: the high validation level spike for mercury was 2 µg/g) concentration levels, indicated that ICP-MS can meet U.S. FDA acceptance criteria for both accuracy (90-105% recovery) and precision (< 6% coefficient of variation). The interlaboratory comparison studies showed that ICP-MS is a reproducible method for the analysis of heavy metals (HorRat value of 0.5-2.0) except for mercury in one laboratory, which used a different sample preparation method (open block rather than microwave digestion). Overall, our study showed that ICP-MS is a reproducible method for the analysis of heavy metals in spite of minor differences in methodology.