Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34548398

RESUMEN

Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining-based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type-specific manner. These findings have implications for potential therapeutic strategies.


Asunto(s)
Huesos/anomalías , Ciliopatías/patología , Craneosinostosis/patología , Proteínas del Citoesqueleto/metabolismo , Displasia Ectodérmica/patología , Embrión no Mamífero/patología , Anomalías Musculoesqueléticas/patología , Enfermedades Renales Poliquísticas/patología , Tubulina (Proteína)/química , Animales , Huesos/metabolismo , Huesos/patología , Ciliopatías/genética , Ciliopatías/metabolismo , Craneosinostosis/genética , Craneosinostosis/metabolismo , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Embrión no Mamífero/metabolismo , Anomalías Musculoesqueléticas/genética , Anomalías Musculoesqueléticas/metabolismo , Fenotipo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Tubulina (Proteína)/metabolismo , Xenopus laevis
2.
J Biol Chem ; 293(39): 15243-15255, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30111592

RESUMEN

Nephronophthisis (NPH) is an autosomal recessive renal disease leading to kidney failure in children and young adults. The protein products of the corresponding genes (NPHPs) are localized in primary cilia or their appendages. Only about 70% of affected individuals have a mutation in one of 100 renal ciliopathy genes, and no unifying pathogenic mechanism has been identified. Recently, some NPHPs, including NIMA-related kinase 8 (NEK8) and centrosomal protein 164 (CEP164), have been found to act in the DNA-damage response pathway and to contribute to genome stability. Here, we show that NME/NM23 nucleoside-diphosphate kinase 3 (NME3) that has recently been found to facilitate DNA-repair mechanisms binds to several NPHPs, including NEK8, CEP164, and ankyrin repeat and sterile α motif domain-containing 6 (ANKS6). Depletion of nme3 in zebrafish and Xenopus resulted in typical ciliopathy-associated phenotypes, such as renal malformations and left-right asymmetry defects. We further found that endogenous NME3 localizes to the basal body and that it associates also with centrosomal proteins, such as NEK6, which regulates cell cycle arrest after DNA damage. The ciliopathy-typical manifestations of NME3 depletion in two vertebrate in vivo models, the biochemical association of NME3 with validated NPHPs, and its localization to the basal body reveal a role for NME3 in ciliary function. We conclude that mutations in the NME3 gene may aggravate the ciliopathy phenotypes observed in humans.


Asunto(s)
Ciliopatías/genética , Enfermedades Renales Quísticas/congénito , Nucleósido Difosfato Quinasas NM23/genética , Insuficiencia Renal/genética , Animales , Puntos de Control del Ciclo Celular/genética , Cilios/genética , Cilios/patología , Ciliopatías/fisiopatología , Daño del ADN/genética , Reparación del ADN/genética , Modelos Animales de Enfermedad , Humanos , Riñón/patología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Proteínas de Microtúbulos/genética , Quinasas Relacionadas con NIMA/genética , Proteínas Nucleares/genética , Insuficiencia Renal/patología , Xenopus/genética , Pez Cebra/genética
3.
Children (Basel) ; 9(5)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35626829

RESUMEN

The onset of IgA nephritis in childhood and adolescence often develops into chronic glomerulonephritis with declining renal function. Although these long-term consequences are known, there is still a lack of evidence-based treatment recommendations in this age group. We report data from 22 pediatric patients who were biopsied to confirm the diagnosis of IgAN at our clinical center. 14 of them were treated with corticosteroids according to the recommendations for IgA nephritis vasculitis of the German Society of Pediatric Nephrology (GPN). Improvement was achieved in the majority of all cases, with a significant reduction in proteinuria five months after initiation of therapy. Our data suggest that treatment regimens for acute IgA nephritis and IgA vasculitis nephritis may be unified and are discussed in the context of current studies.

4.
Front Pediatr ; 10: 974840, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245711

RESUMEN

Background: Steroid resistant nephrotic syndrome (SRNS) represents a significant renal disease burden in childhood and adolescence. In contrast to steroid sensitive nephrotic syndrome (SSNS), renal outcomes are significantly poorer in SRNS. Over the past decade, extensive genetic heterogeneity has become evident while disease-causing variants are still only identified in 30% of cases in previously reported studies with proportion and type of variants identified differing depending on the age of onset and ethnical background of probands. A genetic diagnosis however can have implications regarding clinical management, including kidney transplantation, extrarenal disease manifestations, and, in some cases, even causal therapy. Genetic diagnostics therefore play an important role for the clinical care of SRNS affected individuals. Methodology and results: Here, we performed NPHS2 Sanger sequencing and subsequent exome sequencing in 30 consanguineous Iranian families with a child affected by SRNS with a mean age of onset of 16 months. We identified disease-causing variants and one variant of uncertain significance in 22 families (73%), including variants in NPHS1 (30%), followed by NPHS2 (20%), WT1 (7%) as well as in NUP205, COQ6, ARHGDIA, SGPL1, and NPHP1 in single cases. Eight of these variants have not previously been reported as disease-causing, including four NPHS1 variants and one variant in NPHS2, ARHGDIA, SGPL1, and NPHP1 each. Conclusion: In line with previous studies in non-Iranian subjects, we most frequently identified disease-causing variants in NPHS1 and NPHS2. While Sanger sequencing of NPHS2 can be considered as first diagnostic step in non-congenital cases, the genetic heterogeneity underlying SRNS renders next-generation sequencing based diagnostics as the most efficient genetic screening method. In accordance with the mainly autosomal recessive inheritance pattern, diagnostic yield can be significantly higher in consanguineous than in outbred populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA