Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Anim Ecol ; 93(2): 221-230, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38192091

RESUMEN

Intraspecific trait variation (ITV), potentially driven by genetic and non-genetic mechanisms, can underlie variability in resource acquisition, individual fitness and ecological interactions. Impacts of ITV at higher levels of biological organizations are hence likely, but up-scaling our knowledge about ITV importance to communities and comparing its relative effects at population and community levels has rarely been investigated. Here, we tested the effects of genetic and non-genetic ITV on morphological traits in microcosms of protist communities by contrasting the effects of strains showing different ITV levels (i.e. trait averages and variance) on population growth, community composition and biomass production. We found that genetic and non-genetic ITV can lead to different effects on populations and communities across several generations. Furthermore, the effects of ITV declined across levels of biological organization: ITV directly altered population performance, with cascading but indirect consequences for community composition and biomass productivity. Overall, these results show that the drivers of ITV can have distinct effects on populations and communities, with cascading impacts on higher levels of biological organization that might mediate biodiversity-ecosystem functioning relationships.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Biomasa , Fenotipo , Variación Biológica Poblacional
2.
Am Nat ; 201(3): 363-375, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36848519

RESUMEN

AbstractDispersal is a key process mediating ecological and evolutionary dynamics. Its effects on the dynamics of spatially structured systems, population genetics, and species range distribution can depend on phenotypic differences between dispersing and nondispersing individuals. However, scaling up the importance of resident-disperser differences to communities and ecosystems has rarely been considered, in spite of intraspecific phenotypic variability being an important factor mediating community structure and productivity. Here, we used the ciliate Tetrahymena thermophila, in which phenotypic traits are known to differ between residents and dispersers, to test (i) whether these resident-disperser differences affect biomass and composition in competitive communities composed of four other Tetrahymena species and (ii) whether these effects are genotype dependent. We found that dispersers led to a lower community biomass compared with residents. This effect was highly consistent across the 20 T. thermophila genotypes used, despite intraspecific variability in resident-disperser phenotypic differences. We also found a significant genotypic effect on biomass production, showing that intraspecific variability has consequences for communities. Our study suggests that individual dispersal strategy can scale up to community productivity in a predictable way, opening new perspectives to the functioning of spatially structured ecosystems.


Asunto(s)
Evolución Biológica , Ecosistema , Humanos , Biomasa , Genotipo , Fenotipo
3.
Ecol Lett ; 25(12): 2675-2687, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36223413

RESUMEN

Dispersal is a central biological process tightly integrated into life-histories, morphology, physiology and behaviour. Such associations, or syndromes, are anticipated to impact the eco-evolutionary dynamics of spatially structured populations, and cascade into ecosystem processes. As for dispersal on its own, these syndromes are likely neither fixed nor random, but conditional on the experienced environment. We experimentally studied how dispersal propensity varies with individuals' phenotype and local environmental harshness using 15 species ranging from protists to vertebrates. We reveal a general phenotypic dispersal syndrome across studied species, with dispersers being larger, more active and having a marked locomotion-oriented morphology and a strengthening of the link between dispersal and some phenotypic traits with environmental harshness. Our proof-of-concept metacommunity model further reveals cascading effects of context-dependent syndromes on the local and regional organisation of functional diversity. Our study opens new avenues to advance our understanding of the functioning of spatially structured populations, communities and ecosystems.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Síndrome , Fenotipo
4.
Proc Natl Acad Sci U S A ; 115(47): 11988-11993, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397109

RESUMEN

Limited dispersal is classically considered as a prerequisite for ecological specialization to evolve, such that generalists are expected to show greater dispersal propensity compared with specialists. However, when individuals choose habitats that maximize their performance instead of dispersing randomly, theory predicts dispersal with habitat choice to evolve in specialists, while generalists should disperse more randomly. We tested whether habitat choice is associated with thermal niche specialization using microcosms of the ciliate Tetrahymena thermophila, a species that performs active dispersal. We found that thermal specialists preferred optimal habitats as predicted by theory, a link that should make specialists more likely to track suitable conditions under environmental changes than expected under the random dispersal assumption. Surprisingly, generalists also performed habitat choice but with a preference for suboptimal habitats. Since this result challenges current theory, we developed a metapopulation model to understand under which circumstances such a preference for suboptimal habitats should evolve. We showed that competition between generalists and specialists may favor a preference for niche margins in generalists under environmental variability. Our results demonstrate that the behavioral dimension of dispersal-here, habitat choice-fundamentally alters our predictions of how dispersal evolve with niche specialization, making dispersal behaviors crucial for ecological forecasting facing environmental changes.


Asunto(s)
Biota/fisiología , Conducta Competitiva/fisiología , Tetrahymena thermophila/fisiología , Animales , Evolución Biológica , Cilióforos/fisiología , Ecosistema , Especialización , Especificidad de la Especie , Temperatura , Territorialidad
5.
Proc Biol Sci ; 287(1919): 20192818, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31992166

RESUMEN

Habitat fragmentation is expected to reduce dispersal movements among patches as a result of increased inter-patch distances. Furthermore, since habitat fragmentation is expected to raise the costs of moving among patches in the landscape, it should hamper the ability or tendency of organisms to perform informed dispersal decisions. Here, we used microcosms of the ciliate Tetrahymena thermophila to test experimentally whether habitat fragmentation, manipulated through the length of corridors connecting patches differing in temperature, affects habitat choice. We showed that a twofold increase of inter-patch distance can as expected hamper the ability of organisms to choose their habitat at immigration. Interestingly, it also increased their habitat choice at emigration, suggesting that organisms become choosier in their decision to either stay or leave their patch when obtaining information about neighbouring patches gets harder. This study points out that habitat fragmentation might affect not only dispersal rate but also the level of non-randomness of dispersal, with emigration and immigration decisions differently affected. These consequences of fragmentation might considerably modify ecological and evolutionary dynamics of populations facing environmental changes.


Asunto(s)
Cilióforos/fisiología , Ecosistema , Temperatura , Territorialidad
6.
Ecol Lett ; 21(11): 1629-1638, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30141251

RESUMEN

A fundamental challenge in experimental ecology is to capture nonlinearities of ecological responses to interacting environmental drivers. Here, we demonstrate that gradient designs outperform replicated designs for detecting and quantifying nonlinear responses. We report the results of (1) multiple computer simulations and (2) two purpose-designed empirical experiments. The findings consistently revealed that unreplicated sampling at a maximum number of sampling locations maximised prediction success (i.e. the R² to the known truth) irrespective of the amount of stochasticity and the underlying response surfaces, including combinations of two linear, unimodal or saturating drivers. For the two empirical experiments, the same pattern was found, with gradient designs outperforming replicated designs in revealing the response surfaces of underlying drivers. Our findings suggest that a move to gradient designs in ecological experiments could be a major step towards unravelling underlying response patterns to continuous and interacting environmental drivers in a feasible and statistically powerful way.


Asunto(s)
Simulación por Computador , Ecología , Ecosistema
7.
J Anim Ecol ; 84(5): 1373-83, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25902764

RESUMEN

1. Dispersal is increasingly recognized as being an informed process, based on information organisms obtain about the landscape. While local conditions are often found to drive dispersal decisions, local context is not always a reliable predictor of conditions in neighbouring patches, making the use of local information potentially useless or even maladaptive. In this case, using social information gathered by immigrants might allow adjusting dispersal decisions without paying the costs of prospecting. However, this hypothesis has been largely neglected despite its major importance for ecological and evolutionary processes. 2. We investigated three fundamental questions about immigrant-informed dispersal: Do immigrants convey information that influences dispersal, do organisms use multiple cues from immigrants, and is immigrant-informed dispersal genotype dependent? 33. Using Tetrahymena thermophila ciliates in microcosms, we manipulated the number of immigrants arriving, the density of congeners, the resource quality in neighbouring patches, matrix characteristics and the level of cooperation of individuals in the neighbouring populations. 4. We provide the first experimental evidence that immigrants convey a number of different cues about neighbouring patches and matrix (patch quality, matrix characteristics and cooperation in neighbouring populations) in this relatively simple organism. Furthermore, we demonstrate genotype-dependent immigrant-informed dispersal decisions about patch quality and matrix characteristics. 5. Multiple cues from immigrants and genotype-dependent use of cues have major implications for theoretical metapopulation dynamics and the potential for local adaptation.


Asunto(s)
Tetrahymena thermophila/fisiología , Genotipo , Dinámica Poblacional , Tetrahymena thermophila/genética
8.
Ecol Evol ; 14(4): e11291, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38660468

RESUMEN

In freshwater habitats, aerobic animals and microorganisms can react to oxygen deprivation by a series of behavioural and physiological changes, either as a direct consequence of hindered performance or as adaptive responses towards hypoxic conditions. Since oxygen availability can vary throughout the water column, different strategies exist to avoid hypoxia, including that of active 'flight' from low-oxygen sites. Alternatively, some organisms may invest in slower movement, saving energy until conditions return to more favourable levels, which may be described as a 'sit-and-wait' strategy. Here, we aimed to determine which, if any, of these strategies could be used by the freshwater ciliate Tetrahymena thermophila when faced with decreasing levels of oxygen availability in the culture medium. We manipulated oxygen flux into clonal cultures of six strains (i.e. genotypes) and followed their growth kinetics for several weeks using automated image analysis, allowing to precisely quantify changes in density, morphology and movement patterns. Oxygen effects on demography and morphology were comparable across strains: reducing oxygen flux decreased the growth rate and maximal density of experimental cultures, while greatly expanding the duration of their stationary phase. Cells sampled during their exponential growth phase were larger and had a more elongated shape under hypoxic conditions, likely mirroring a shift in resource investment towards individual development rather than frequent divisions. In addition to these general patterns, we found evidence for intraspecific variability in movement responses to oxygen limitation. Some strains showed a reduction in swimming speed, potentially associated with a 'sit-and-wait' strategy; however, the frequent alteration of movement paths towards more linear trajectories also suggests the existence of an inducible 'flight response' in this species. Considering the inherent costs of turns associated with non-linear movement, such a strategy may allow ciliates to escape suboptimal environments at a low energetic cost.

9.
BMC Ecol Evol ; 24(1): 47, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632521

RESUMEN

BACKGROUND: Over the past decade, theory and observations have suggested intraspecific variation, trait-based differences within species, as a buffer against biodiversity loss from multiple environmental changes. This buffering effect can only occur when different populations of the same species respond differently to environmental change. More specifically, variation of demographic responses fosters buffering of demography, while variation of trait responses fosters buffering of functioning. Understanding how both responses are related is important for predicting biodiversity loss and its consequences. In this study, we aimed to empirically assess whether population-level trait responses to multiple environmental change drivers are related to the demographic response to these drivers. To this end, we measured demographic and trait responses in microcosm experiments with two species of ciliated protists. For three clonal strains of each species, we measured responses to two environmental change drivers (climate change and pollution) and their combination. We also examined if relationships between demographic and trait responses existed across treatments and strains. RESULTS: We found different demographic responses across strains of the same species but hardly any interactive effects between the two environmental change drivers. Also, trait responses (summarized in a survival strategy index) varied among strains within a species, again with no driver interactions. Demographic and trait responses were related across all strains of both species tested in this study: Increasing intrinsic growth and self-limitation were associated with a shift in survival strategy from sit-and-wait towards flee. CONCLUSIONS: Our results support the existence of a link between a population's demographic and trait responses to environmental change drivers in two species of ciliate. Future work could dive deeper into the specifics of phenotypical trait values, and changes therein, related to specific life strategies in different species of ciliate and other zooplankton grazers.


Asunto(s)
Biodiversidad , Cambio Climático , Fenotipo , Demografía
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230142, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38913061

RESUMEN

Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution-increased trait dimensionality of biodiverse meta-systems-and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more 'diffuse' evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Asunto(s)
Distribución Animal , Evolución Biológica , Animales , Ecosistema
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230127, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38913065

RESUMEN

Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Asunto(s)
Distribución Animal , Animales , Ecosistema , Vertebrados/fisiología
12.
J Anim Ecol ; 82(1): 275-85, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22924795

RESUMEN

As ectothermic organisms, butterflies have widely been used as models to explore the predicted impacts of climate change. However, most studies explore only one life stage; to our best knowledge, none have integrated the impact of temperature on the vital rates of all life stages for a species of conservation concern. Besides, most population viability analysis models for butterflies are based on yearly population growth rate, precluding the implementation and assessment of important climate change scenarios, where climate change occurs mainly, or differently, during some seasons. Here, we used a combination of laboratory and field experiments to quantify the impact of temperature on all life stages of a vulnerable glacial relict butterfly. Next, we integrated these impacts into an overall population response using a deterministic periodic matrix model and explored the impact of several climate change scenarios. Temperature positively affected egg, pre-diapause larva and pupal survival, and the number of eggs laid by a female; only the survival of overwintering larva was negatively affected by an increase in temperature. Despite the positive impact of warming on many life stages, population viability was reduced under all scenarios, with predictions of much shorter times to extinction than under the baseline (current temperature situation) scenario. Indeed, model predictions were the most sensitive to changes in survival of overwintering larva, the only stage negatively affected by warming. A proper consideration of every stage of the life cycle is important when designing conservation guidelines in the light of climate change. This is in line with the resource-based habitat view, which explicitly refers to the habitat as a collection of resources needed for all life stages of the species. We, therefore, encourage adopting a resource-based habitat view for population viability analysis and development of conservation guidelines for butterflies, and more generally, other organisms. Life stages that are cryptic or difficult to study should not be forsaken as they may be key determinants in the overall response to climate change, as we found with overwintering Boloria eunomia larvae.


Asunto(s)
Mariposas Diurnas/fisiología , Cambio Climático , Estadios del Ciclo de Vida/fisiología , Animales , Monitoreo del Ambiente , Femenino , Larva , Modelos Biológicos , Dinámica Poblacional , Pupa
13.
BMC Ecol Evol ; 23(1): 1, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631737

RESUMEN

BACKGROUND: Functional traits are phenotypic traits that affect an organism's performance and shape ecosystem-level processes. The main challenge when using functional traits to quantify biodiversity is to choose which ones to measure since effort and money are limited. As one way of dealing with this, Hodgson et al. (Oikos 85:282, 1999) introduced the idea of two types of traits, with soft traits that are easy and quick to quantify, and hard traits that are directly linked to ecosystem functioning but difficult to measure. If a link exists between the two types of traits, then one could use soft traits as a proxy for hard traits for a quick but meaningful assessment of biodiversity. However, this framework is based on two assumptions: (1) hard and soft traits must be tightly connected to allow reliable prediction of one using the other; (2) the relationship between traits must be monotonic and linear to be detected by the most common statistical techniques (e.g. linear model, PCA). RESULTS: Here we addressed those two assumptions by focusing on six functional traits of the protist species Tetrahymena thermophila, which vary both in their measurement difficulty and functional meaningfulness. They were classified as: easy traits (morphological traits), intermediate traits (movement traits) and hard traits (oxygen consumption and population growth rate). We detected a high number (> 60%) of non-linear relations between the traits, which can explain the low number of significant relations found using linear models and PCA analysis. Overall, these analyses did not detect any relationship strong enough to predict one trait using another, but that does not imply there are none. CONCLUSIONS: Our results highlighted the need to critically assess the relations among the functional traits used as proxies and those functional traits which they aim to reflect. A thorough assessment of whether such relations exist across species and communities is a necessary next step to evaluate whether it is possible to take a shortcut in quantifying functional diversity by collecting the data on easily measurable traits.


Asunto(s)
Ecosistema , Tetrahymena thermophila , Biodiversidad , Fenotipo , Crecimiento Demográfico
14.
Trends Ecol Evol ; 37(4): 322-331, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34952726

RESUMEN

Dispersal mediates the flow of organisms in meta-communities and subsequently energy and material flows in meta-ecosystems. Individuals within species often vary in dispersal tendency depending on their phenotypic traits (i.e., dispersal syndromes), but the implications of dispersal syndromes for meta-ecosystems have been rarely studied. Using empirical examples on vertebrates, arthropods, and microbes, we highlight that key functional traits can be linked to dispersal. We argue that this coupling between dispersal and functional traits can have consequences for meta-ecosystem functioning, mediating flows of functional traits and thus the spatial heterogeneity of ecosystem functions. As dispersal syndromes may be genetically determined, the spatial heterogeneity of functional traits may be further carried over across generations and link meta-ecosystem functioning to evolutionary dynamics.


Asunto(s)
Evolución Biológica , Ecosistema , Animales , Humanos , Fenotipo , Síndrome
15.
Genes (Basel) ; 12(3)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802587

RESUMEN

Understanding the functioning of natural metapopulations at relevant spatial and temporal scales is necessary to accurately feed both theoretical eco-evolutionary models and conservation plans. One key metric to describe the dynamics of metapopulations is dispersal rate. It can be estimated with either direct field estimates of individual movements or with indirect molecular methods, but the two approaches do not necessarily match. We present a field study in a large natural metapopulation of the butterfly Boloria eunomia in Belgium surveyed over three generations using synchronized demographic and genetic datasets with the aim to characterize its genetic structure, its dispersal dynamics, and its demographic stability. By comparing the census and effective population sizes, and the estimates of dispersal rates, we found evidence of stability at several levels: constant inter-generational ranking of population sizes without drastic historical changes, stable genetic structure and geographically-influenced dispersal movements. Interestingly, contemporary dispersal estimates matched between direct field and indirect genetic assessments. We discuss the eco-evolutionary mechanisms that could explain the described stability of the metapopulation, and suggest that destabilizing agents like inter-generational fluctuations in population sizes could be controlled by a long adaptive history of the species to its dynamic local environment. We finally propose methodological avenues to further improve the match between demographic and genetic estimates of dispersal.


Asunto(s)
Mariposas Diurnas/genética , Genómica/métodos , Animales , Bélgica , Evolución Molecular , Genética de Población , Modelos Biológicos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Densidad de Población , Dinámica Poblacional , Análisis de Secuencia de ADN , Análisis Espacio-Temporal
16.
Mol Ecol ; 19(13): 2800-12, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20561198

RESUMEN

Genetic variability, kin structure and demography of a population are mutually dependent. Population genetic theory predicts that under demographically stable conditions, neutral genetic variability reaches equilibrium between gene flow and drift. However, density fluctuations and non-random mating, resulting e.g. from kin clustering, may lead to changes in genetic composition over time. Theoretical models also predict that changes in kin structure may affect aggression level and recruitment, leading to density fluctuations. These predictions have been rarely tested in natural populations. The aim of this study was to analyse changes in genetic variability and kin structure in a local population of the root vole (Microtus oeconomus) that underwent a fourfold change in mean density over a 6-year period. Intensive live-trapping resulted in sampling 88% of individuals present in the study area, as estimated from mark-recapture data. Based on 642 individual genotypes at 20 microsatellite loci, we compared genetic variability and kin structure of this population between consecutive years. We found that immigration was negatively correlated with density, while the number of kin groups was positively correlated with density. This is consistent with theoretical predictions that changes in kin structure play an important role in population fluctuations. Despite the changes in density and kin structure, there was no genetic differentiation between years. Population-level genetic diversity measures did not significantly vary in time and remained relatively high (H(E) range: 0.72-0.78). These results show that a population that undergoes significant demographic and social changes may maintain high genetic variability and stable genetic composition.


Asunto(s)
Arvicolinae/genética , Variación Genética , Genética de Población , Reproducción/genética , Animales , Femenino , Genotipo , Desequilibrio de Ligamiento , Masculino , Repeticiones de Microsatélite , Polonia , Densidad de Población , Análisis de Secuencia de ADN , Factores de Tiempo
17.
BMC Evol Biol ; 9: 251, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19828046

RESUMEN

BACKGROUND: The evolution of social cooperation is favored by aggregative behavior to facilitate stable social structure and proximity among kin. High dispersal rates reduce group stability and kin cohesion, so it is generally assumed that there is a fundamental trade-off between cooperation and dispersal. However, empirical tests of this relationship are rare. We tested this assumption experimentally using ten genetically isolated strains of a ciliate, Tetrahymena thermophila. RESULTS: The propensity for social aggregation was greater in strains with reduced cell quality and lower growth performance. While we found a trade-off between costly aggregation and local dispersal in phenotypic analyses, aggregative strains showed a dispersal polymorphism by producing either highly sedentary or long-distance dispersive cells, in contrast to less aggregative strains whose cells were monomorphic local dispersers. CONCLUSION: High dispersal among aggregative strains may not destroy group stability in T. thermophila because the dispersal polymorphism allows social strains to more readily escape kin groups than less aggregative strains, yet still benefit from stable group membership among sedentary morphs. Such dispersal polymorphisms should be common in other social organisms, serving to alter the nature of the negative impact of dispersal on social evolution.


Asunto(s)
Conducta Social , Tetrahymena thermophila/fisiología , Animales , Evolución Biológica , Movimiento Celular , Variación Genética , Fenotipo , Dinámica Poblacional , Tetrahymena thermophila/genética , Tetrahymena thermophila/crecimiento & desarrollo
18.
BMC Biol ; 6: 46, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18986515

RESUMEN

BACKGROUND: Theory predicts that lower dispersal, and associated gene flow, leads to decreased genetic diversity in small isolated populations, which generates adverse consequences for fitness, and subsequently for demography. Here we report for the first time this effect in a well-connected natural butterfly metapopulation with high population densities at the edge of its distribution range. RESULTS: We demonstrate that: (1) lower genetic diversity was coupled to a sharp decrease in adult lifetime expectancy, a key component of individual fitness; (2) genetic diversity was positively correlated to the number of dispersing individuals (indicative of landscape functional connectivity) and adult population size; (3) parameters inferred from capture-recapture procedures (population size and dispersal events between patches) correlated much better with genetic diversity than estimates usually used as surrogates for population size (patch area and descriptors of habitat quality) and dispersal (structural connectivity index). CONCLUSION: Our results suggest that dispersal is a very important factor maintaining genetic diversity. Even at a very local spatial scale in a metapopulation consisting of large high-density populations interconnected by considerable dispersal rates, genetic diversity can be decreased and directly affect the fitness of individuals. From a biodiversity conservation perspective, this study clearly shows the benefits of both in-depth demographic and genetic analyses. Accordingly, to ensure the long-term survival of populations, conservation actions should not be blindly based on patch area and structural isolation. This result may be especially pertinent for species at their range margins, particularly in this era of rapid environmental change.


Asunto(s)
Mariposas Diurnas/fisiología , Variación Genética , Longevidad/genética , Migración Animal , Animales , Mariposas Diurnas/genética , Ecosistema , Femenino , Heterocigoto , Masculino , Densidad de Población
19.
PeerJ ; 7: e8197, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31871838

RESUMEN

Understanding how and why individual movement translates into dispersal between populations is a long-term goal in ecology. Movement is broadly defined as 'any change in the spatial location of an individual', whereas dispersal is more narrowly defined as a movement that may lead to gene flow. Because the former may create the condition for the latter, behavioural decisions that lead to dispersal may be detectable in underlying movement behaviour. In addition, dispersing individuals also have specific sets of morphological and behavioural traits that help them coping with the costs of movement and dispersal, and traits that mitigate costs should be under selection and evolve if they have a genetic basis. Here, we experimentally study the relationships between movement behaviour, morphology and dispersal across 44 genotypes of the actively dispersing unicellular, aquatic model organism Tetrahymena thermophila. We used two-patch populations to quantify individual movement trajectories, as well as activity, morphology and dispersal rate. First, we studied variation in movement behaviour among and within genotypes (i.e. between dispersers and residents) and tested whether this variation can be explained by morphology. Then, we addressed how much the dispersal rate is driven by differences in the underlying movement behaviour. Genotypes revealed clear differences in terms of movement speed and linearity. We also detected marked movement differences between resident and dispersing individuals, mediated by the genotype. Movement variation was partly explained by morphological properties such as cell size and shape, with larger cells consistently showing higher movement speed and higher linearity. Genetic differences in activity and movement were positively related to the observed dispersal and jointly explained 47% of the variation in dispersal rate. Our study shows that a detailed understanding of the interplay between morphology, movement and dispersal may have potential to improve dispersal predictions over broader spatio-temporal scales.

20.
Nat Ecol Evol ; 2(12): 1859-1863, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30397298

RESUMEN

Ecology and evolution unfold in spatially structured communities, where dispersal links dynamics across scales. Because dispersal is multicausal, identifying general drivers remains challenging. In a coordinated distributed experiment spanning organisms from protozoa to vertebrates, we tested whether two fundamental determinants of local dynamics, top-down and bottom-up control, generally explain active dispersal. We show that both factors consistently increased emigration rates and use metacommunity modelling to highlight consequences on local and regional dynamics.


Asunto(s)
Migración Animal , Ecosistema , Invertebrados/fisiología , Vertebrados/fisiología , Animales , Criptófitas/fisiología , Hymenostomatida/fisiología , Modelos Biológicos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA