RESUMEN
Genetic studies of complex traits have become increasingly successful as progress is made in next-generation sequencing. We aimed at discovering single nucleotide variation present in known and new candidate genes for developmental dyslexia: CYP19A1, DCDC2, DIP2A, DYX1C1, GCFC2 (also known as C2orf3), KIAA0319, MRPL19, PCNT, PRMT2, ROBO1 and S100B. We used next-generation sequencing to identify single-nucleotide polymorphisms in the exons of these 11 genes in pools of 100 DNA samples of Finnish individuals with developmental dyslexia. Subsequent individual genotyping of those 100 individuals, and additional cases and controls from the Finnish and German populations, validated 92 out of 111 different single-nucleotide variants. A nonsynonymous polymorphism in DCDC2 (corrected P = 0.002) and a noncoding variant in S100B (corrected P = 0.016) showed a significant association with spelling performance in families of German origin. No significant association was found for the variants neither in the Finnish case-control sample set nor in the Finnish family sample set. Our findings further strengthen the role of DCDC2 and implicate S100B, in the biology of reading and spelling.
Asunto(s)
Dislexia/genética , Proteínas Asociadas a Microtúbulos/genética , Subunidad beta de la Proteína de Unión al Calcio S100/genética , Estudios de Casos y Controles , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADNRESUMEN
Four genes, DYX1C1, ROBO1, DCDC2 and KIAA0319 have been studied both genetically and functionally as candidate genes for developmental dyslexia, a common learning disability in children. The identification of novel genes is crucial to better understand the molecular pathways affected in dyslectic individuals. Here, we report results from a fine-mapping approach involving linkage and association analysis in Finnish and German dyslexic cohorts. We restrict a candidate region to 0.3 Mb on chromosome 7q33. This region harbours the gene diacylglycerol kinase, iota (DGKI) which contains overlapping haplotypes associated with dyslexia in both Finnish and German sample sets.