Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674922

RESUMEN

A mass spectrometry-based lipidomic investigation of 30 patients with chronic hepatitis C virus (HCV) infection and 30 age- and sex-matched healthy blood donor controls was undertaken. The clustering and complete separation of these two groups was found by both unsupervised and supervised multivariate data analyses. Three patients who had spontaneously cleared the virus and three who were successfully treated with direct-acting antiviral drugs remained within the HCV-positive metabotype, suggesting that the metabolic effects of HCV may be longer-lived. We identified 21 metabolites that were upregulated in plasma and 34 that were downregulated (p < 1 × 10-16 to 0.0002). Eleven members of the endocannabinoidome were elevated, including anandamide and eight fatty acid amides (FAAs). These likely activated the cannabinoid receptor GPR55, which is a pivotal host factor for HCV replication. FAAH1, which catabolizes FAAs, reduced mRNA expression. Four phosphosphingolipids, d16:1, d18:1, d19:1 sphingosine 1-phosphate, and d18:0 sphinganine 1-phosphate, were increased, together with the mRNA expression for their synthetic enzyme SPHK1. Among the most profoundly downregulated plasma lipids were several lysophosphatidylinositols (LPIs) from 3- to 3000-fold. LPIs are required for the synthesis of phosphatidylinositol 4-phosphate (PI4P) pools that are required for HCV replication, and LPIs can also activate the GPR55 receptor. Our plasma lipidomic findings shed new light on the pathobiology of HCV infection and show that a subset of bioactive lipids that may contribute to liver pathology is altered by HCV infection.


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Humanos , Hepacivirus/fisiología , Endocannabinoides , Replicación Viral , Antivirales , ARN Mensajero
2.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682566

RESUMEN

Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1-/-, or Sphk2-/- mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2-/- renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2-/- cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease.


Asunto(s)
Eritropoyetina , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Epoetina alfa , Eritropoyetina/genética , Eritropoyetina/metabolismo , Fibroblastos/metabolismo , Hipoxia , Riñón/metabolismo , Ratones , ARN Mensajero/genética , Esfingosina/metabolismo
3.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35409312

RESUMEN

S1P and its receptors have been reported to play important roles in the development of renal fibrosis. Although S1P5 has barely been investigated so far, there are indications that it can influence inflammatory and fibrotic processes. Here, we report the role of S1P5 in renal inflammation and fibrosis. Male S1P5 knockout mice and wild-type mice on a C57BL/6J background were fed with an adenine-rich diet for 7 days or 14 days to induce tubulointerstitial fibrosis. The kidneys of untreated mice served as respective controls. Kidney damage, fibrosis, and inflammation in kidney tissues were analyzed by real-time PCR, Western blot, and histological staining. Renal function was assessed by plasma creatinine ELISA. The S1P5 knockout mice had better renal function and showed less kidney damage, less proinflammatory cytokine release, and less fibrosis after 7 days and 14 days of an adenine-rich diet compared to wild-type mice. S1P5 knockout ameliorates tubular damage and tubulointerstitial fibrosis in a model of adenine-induced nephropathy in mice. Thus, targeting S1P5 might be a promising goal for the pharmacological treatment of kidney diseases.


Asunto(s)
Adenina , Insuficiencia Renal Crónica , Adenina/efectos adversos , Animales , Fibrosis , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Insuficiencia Renal Crónica/patología , Esfingosina/farmacología , Receptores de Esfingosina-1-Fosfato
4.
Int J Mol Sci ; 21(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092937

RESUMEN

Ceramide kinase (CerK) is a lipid kinase that converts the proapoptotic ceramide to ceramide 1-phosphate, which has been proposed to have pro-malignant properties and regulate cell responses such as proliferation, migration, and inflammation. We used the parental human breast cancer cell line MDA-MB-231 and two single cell progenies derived from lung and bone metastasis upon injection of the parental cells into immuno-deficient mice. The lung and the bone metastatic cell lines showed a marked upregulation of CerK mRNA and activity when compared to the parental cell line. The metastatic cells also had increased migratory and invasive activity, which was dose-dependently reduced by the selective CerK inhibitor NVP-231. A similar reduction of migration was seen when CerK was stably downregulated with small hairpin RNA (shRNA). Conversely, overexpression of CerK in parental MDA-MB-231 cells enhanced migration, and this effect was also observed in the non-metastatic cell line MCF7 upon CerK overexpression. On the molecular level, CerK overexpression increased the activation of protein kinase Akt. The increased migration of CerK overexpressing cells was mitigated by the CerK inhibitor NVP-231, by inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway and the Rho kinase, but not by inhibition of the classical extracellular signal-regulated kinase (ERK) pathway. Altogether, our data demonstrate for the first time that CerK promotes migration and invasion of metastatic breast cancer cells and that targeting of CerK has potential to counteract metastasis in breast cancer.


Asunto(s)
Neoplasias Óseas/metabolismo , Neoplasias de la Mama/metabolismo , Movimiento Celular/genética , Neoplasias Pulmonares/metabolismo , Invasividad Neoplásica/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Benzotiazoles/farmacología , Neoplasias Óseas/enzimología , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Hidrocarburos Aromáticos con Puentes/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño , Regulación hacia Arriba
5.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32244391

RESUMEN

Hepatocellular carcinoma (HCC) shows a remarkable heterogeneity and is recognized as a chemoresistant tumor with dismal prognosis. In previous studies, we observed significant alterations in the serum sphingolipids of patients with HCC. This study aimed to investigate the in vitro effects of sorafenib, which is the most widely used systemic HCC medication, on the sphingolipid pathway as well as the effects of inhibiting the sphingolipid pathway in HCC. Huh7.5 and HepG2 cells were stimulated with sorafenib, and inhibitors of the sphingolipid pathway and cell proliferation, viability, and concentrations of bioactive metabolites were assessed. We observed a significant downregulation of cell proliferation and viability and a simultaneous upregulation of dihydroceramides upon sorafenib stimulation. Interestingly, fumonisin B1 (FB1) and the general sphingosine kinase inhibitor SKI II were able to inhibit cell proliferation more prominently in HepG2 and Huh7.5 cells, whereas there were no consistent effects on the formation of dihydroceramides, thus implying an involvement of distinct metabolic pathways. In conclusion, our study demonstrates a significant downregulation of HCC proliferation upon sorafenib, FB1, and SKI II treatment, whereas it seems they exert antiproliferative effects independently from sphingolipids. Certainly, further data would be required to elucidate the potential of FB1 and SKI II as putative novel therapeutic targets in HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Sorafenib/farmacología , Esfingolípidos/metabolismo , Apoptosis/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Ceramidas , Células Hep G2 , Humanos , Inhibidores de Proteínas Quinasas/farmacología
6.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32069843

RESUMEN

Sphingosine 1-phosphate (S1P) is a key bioactive lipid that regulates a myriad of physiological and pathophysiological processes, including endothelial barrier function, vascular tone, vascular inflammation, and angiogenesis. Various S1P receptor subtypes have been suggested to be involved in the regulation of these processes, whereas the contribution of intracellular S1P (iS1P) through intracellular targets is little explored. In this study, we used the human cerebral microvascular endothelial cell line HCMEC/D3 to stably downregulate the S1P lyase (SPL-kd) and evaluate the consequences on endothelial barrier function and on the molecular factors that regulate barrier tightness under normal and inflammatory conditions. The results show that in SPL-kd cells, transendothelial electrical resistance, as a measure of barrier integrity, was regulated in a dual manner. SPL-kd cells had a delayed barrier build up, a shorter interval of a stable barrier, and, thereafter, a continuous breakdown. Contrariwise, a protection was seen from the rapid proinflammatory cytokine-mediated barrier breakdown. On the molecular level, SPL-kd caused an increased basal protein expression of the adherens junction molecules PECAM-1, VE-cadherin, and ß-catenin, increased activity of the signaling kinases protein kinase C, AMP-dependent kinase, and p38-MAPK, but reduced protein expression of the transcription factor c-Jun. However, the only factors that were significantly reduced in TNFα/SPL-kd compared to TNFα/control cells, which could explain the observed protection, were VCAM-1, IL-6, MCP-1, and c-Jun. Furthermore, lipid profiling revealed that dihydro-S1P and S1P were strongly enhanced in TNFα-treated SPL-kd cells. In summary, our data suggest that SPL inhibition is a valid approach to dampenan inflammatory response and augmente barrier integrity during an inflammatory challenge.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Inflamación/metabolismo , Lisofosfolípidos/metabolismo , Neovascularización Patológica/genética , Esfingosina/análogos & derivados , Aldehído-Liasas/genética , Barrera Hematoencefálica/patología , Línea Celular , Quimiocina CCL2/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Inflamación/genética , Inflamación/patología , Interleucina-6/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Lisofosfolípidos/genética , Neovascularización Patológica/metabolismo , Transducción de Señal/genética , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Factor de Necrosis Tumoral alfa/genética , Molécula 1 de Adhesión Celular Vascular/genética , beta Catenina/genética
7.
Cell Physiol Biochem ; 47(6): 2522-2533, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29991026

RESUMEN

BACKGROUND/AIMS: Sphingosine 1-phosphate (S1P) is considered as a key molecule regulating various cell functions including cell growth and death. It is produced by two sphingosine kinases (SK) denoted as SK-1 and SK-2. Whereas SK-1 has been extensively studied and has been appointed a role in promoting cell growth, the function of SK-2 is controversial, and both pro-proliferative and pro-apoptotic functions have been suggested. In this study we investigated whether renal mesangial cells isolated from transgenic mice overexpressing the human Sphk2 gene (hSK2-tg) showed an altered cell response towards growth-inducing and apoptotic stimuli. METHODS: hSK2-tg mice were generated by using a Quick KnockinR strategy. Renal mesangial cells were isolated by a differential sieving method and further cultivated in vitro. Lipids were quantified by mass spectrometry. Protein expression was determined by Western blot analysis, cell proliferation was determined by 3H-thymidine incorporation, and apoptosis was determined by a DNA fragmentation ELISA. RESULTS: We show here that kidneys and mesangial cells from hSK2-tg mice express the hSK2 as well as the endogenous mouse mSK2. hSK2 and mSK2 predominantly resided in the cytosol of quiescent transgenic cells. However, S1P accumulated strongly in the nucleus and only minimally in the cytosol of transgenic cells. Functionally, hSK2-tg cells proliferated less than control cells under normal growth conditions and were also more sensitive towards stress-induced apoptosis. On the molecular level, this was reflected by reduced ERK and Akt/PKB activation, and upon staurosporine treatment, by a sensitized mitochondrial pathway as manifested by reduced anti-apoptotic Bcl-XL expression and increased cleavage of caspase-9, downstream caspase-3 and PARP-1. CONCLUSION: Altogether, these data demonstrate that SK-2 exerts an antiproliferative and apoptosis-sensitizing effect in renal mesangial cells which suggests that selective inhibitors of SK-2 may promote proliferation and reduce apoptosis and this may have impact on the outcome of proliferation-associated diseases such as mesangioproliferative glomerulonephritis.


Asunto(s)
Apoptosis , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Células Mesangiales/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Humanos , Células Mesangiales/citología , Ratones , Ratones Transgénicos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
8.
Am J Pathol ; 187(11): 2413-2429, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28807595

RESUMEN

Kidney fibrosis is a hallmark of chronic kidney disease and leads to extracellular matrix accumulation, organ scarring, and loss of kidney function. In this study, we investigated the role of sphingosine kinase-2 (SPHK2) on the progression of tubular fibrosis by using a mouse unilateral ureteral obstruction (UUO) model. We found that SPHK2 protein and activity are up-regulated in fibrotic renal tissue. Functionally, Sphk2-deficient (Sphk2-/-) mice showed an attenuated fibrotic response to UUO compared with wild-type mice, as demonstrated by reduced collagen abundance and decreased expression of fibronectin-1, collagen I, α-smooth muscle actin, connective tissue growth factor (CTGF), and plasminogen activator inhibitor (PAI-1). More important, these changes were associated with increased expression of the antifibrotic protein Smad7 and higher levels of sphingosine in Sphk2-/- UUO kidneys. Mechanistically, sphingosine ameliorates transforming growth factor-ß-induced collagen accumulation, CTGF, and PAI-1 expression, but enhances Smad7 protein expression in primary kidney fibroblasts. In a complementary approach, in human Sphk2-overexpressing mice, UUO resulted in exacerbated signs of fibrosis with increased collagen accumulation, higher expression levels of fibronectin-1, collagen I, α-smooth muscle actin, CTGF, and PAI-1, but decreased Smad7 expression. SPHK2 plays an important role in kidney fibrogenesis by modulating transforming growth factor-ß signaling. Thus, SPHK2 might be an attractive new target for the treatment of fibrosis in chronic kidney disease.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteína smad7/metabolismo , Obstrucción Ureteral/patología , Animales , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Modelos Animales de Enfermedad , Fibrosis/genética , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Proteína smad7/genética , Regulación hacia Arriba , Obstrucción Ureteral/genética
9.
Biochim Biophys Acta ; 1861(11): 1840-1851, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27616330

RESUMEN

Breast cancer is one of the most common and devastating malignancies among women worldwide. Recent evidence suggests that malignant progression is also driven by processes involving the sphingolipid molecule sphingosine 1-phosphate (S1P) and its binding to cognate receptor subtypes on the cell surface. To investigate the effect of this interaction on the metastatic phenotype, we used the breast cancer cell line MDA-MB-231 and the sublines 4175 and 1833 derived from lung and bone metastases in nude mice, respectively. In both metastatic cell lines expression of the S1P3 receptor was strongly upregulated compared to the parental cells and correlated with higher S1P-induced intracellular calcium ([Ca2+]i), higher cyclooxygenase (COX)-2 and microsomal prostaglandin (PG) E2 synthase expression, and consequently with increased PGE2 synthesis. PGE2 synthesis was decreased by antagonists and siRNA against S1P3 and S1P2. Moreover, in parental MDA-MB-231 cells overexpression of S1P3 by cDNA transfection also increased PGE2 synthesis, but only after treatment with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine, indicating reversible silencing of the COX-2 promoter. Functionally, the metastatic sublines showed enhanced migration and Matrigel invasion in adapted Boyden chamber assays, which further increased by S1P stimulation. This response was abrogated by either S1P3 antagonism, COX-2 inhibition or PGE2 receptor 2 (EP2) and 4 (EP4) antagonism, but not by S1P2 antagonism. Our data demonstrate that in breast cancer cells overexpression of S1P3 and its activation by S1P has pro-inflammatory and pro-metastatic potential by inducing COX-2 expression and PGE2 signaling via EP2 and EP4.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular , Dinoprostona/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Regulación hacia Arriba , Neoplasias de la Mama/genética , Calcio/metabolismo , Celecoxib/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprostona/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Lisofosfolípidos/farmacología , Invasividad Neoplásica , Metástasis de la Neoplasia , Prostaglandina-E Sintasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Lisoesfingolípidos/genética , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP4 de Receptores de Prostaglandina E/genética , Esfingosina/análogos & derivados , Esfingosina/farmacología , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
10.
Int J Mol Sci ; 18(3)2017 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-28282921

RESUMEN

In its soluble form, the extracellular matrix proteoglycan biglycan triggers the synthesis of the macrophage chemoattractants, chemokine (C-C motif) ligand CCL2 and CCL5 through selective utilization of Toll-like receptors (TLRs) and their adaptor molecules. However, the respective downstream signaling events resulting in biglycan-induced CCL2 and CCL5 production have not yet been defined. Here, we show that biglycan stimulates the production and activation of sphingosine kinase 1 (SphK1) in a TLR4- and Toll/interleukin (IL)-1R domain-containing adaptor inducing interferon (IFN)-ß (TRIF)-dependent manner in murine primary macrophages. We provide genetic and pharmacological proof that SphK1 is a crucial downstream mediator of biglycan-triggered CCL2 and CCL5 mRNA and protein expression. This is selectively driven by biglycan/SphK1-dependent phosphorylation of the nuclear factor NF-κB p65 subunit, extracellular signal-regulated kinase (Erk)1/2 and p38 mitogen-activated protein kinases. Importantly, in vivo overexpression of soluble biglycan causes Sphk1-dependent enhancement of renal CCL2 and CCL5 and macrophage recruitment into the kidney. Our findings describe the crosstalk between biglycan- and SphK1-driven extracellular matrix- and lipid-signaling. Thus, SphK1 may represent a new target for therapeutic intervention in biglycan-evoked inflammatory conditions.


Asunto(s)
Biglicano/metabolismo , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Biochim Biophys Acta ; 1851(5): 519-26, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25601519

RESUMEN

Transforming growth factor ß2 (TGF-ß2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-ß2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-ß downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-ß2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-ß2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-ß2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-ß. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Células Mesangiales/efectos de los fármacos , Receptores de Lisoesfingolípidos/efectos de los fármacos , Factor de Crecimiento Transformador beta2/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Humanos , Células Mesangiales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , ARN Mensajero/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Factores de Tiempo , Transfección , Regulación hacia Arriba
12.
Hepatology ; 61(3): 812-22, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25348752

RESUMEN

UNLABELLED: Ablation of very-long-chain ceramides (Cers) with consecutive elevations in sphinganine levels has been shown to cause a severe hepatopathy in a knockout mouse model. We have recently shown that serum sphingolipids (SLs) are deregulated in patients with chronic liver disease. However, their role as possible biomarkers in liver fibrosis remains to date unexplored. We assessed, using liquid chromatography/tandem mass spectrometry, serum concentrations of various SL metabolites in 406 patients with chronic viral hepatitis, 203 infected with genotype 1 hepatitis C virus (HCV) and 203 with hepatitis B virus (HBV), respectively. We observed significant variations of serum SLs, with sphingosine and sphinganine being, both in univariate (P<0.05) as well as in multivariate analysis, significantly associated to severity of liver fibrosis in HCV-infected patients (odds ratio [OR]: 1.111; confidence interval [CI]: 1.028-1.202; P=0.007 and OR, 0.634; CI, 0.435-0.925; P=0.018, respectively). Serum SLs correlated significantly with serum triglyceride and cholesterol levels as well as with insulin resistance, defined by the homeostatic model assessment index, in HCV patients. Sustained viral response rates in HCV patients were independently predicted by serum C24Cer (OR, 0.998; CI, 0.997-0.999; P=0.001), its unsaturated derivative C24:1Cer (OR, 1.001; CI, 1.000-1.002; P=0.059), and C18:1Cer (OR, 0.973; CI, 0.947-0.999; P=0.048), together with ferritin (OR, 1.006; CI, 1.003-1.010; P<0.001), alkaline phosphatase (OR, 1.020; CI, 1.001-1.039; P=0.032), and interleukin-28B genotype (OR, 9.483; CI, 3.139-28.643; P<0.001). CONCLUSION: Our study demonstrates a tight interaction between variations in serum SL levels and progression of liver fibrosis as well as responsiveness to antiviral therapy. Particularly, sphingosine, sphinganine, and C24Cer appear as promising novel biomarkers in chronic HCV infection and should be further evaluated within the noninvasive prediction of liver fibrosis.


Asunto(s)
Hepatitis B Crónica/sangre , Hepatitis C Crónica/sangre , Cirrosis Hepática/sangre , Esfingolípidos/sangre , Adolescente , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/virología , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Esfingosina/sangre
13.
Biochim Biophys Acta ; 1841(7): 1012-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24769340

RESUMEN

UNLABELLED: Sphingolipids constitute bioactive molecules with functional implications in homeostasis and pathogenesis of various diseases. However, the role of sphingolipids as possible disease biomarkers in chronic liver disease remains largely unexplored. In the present study we used mass spectrometry and spectrofluorometry methods in order to quantify various sphingolipid metabolites and also assess the activity of an important corresponding regulating enzyme in the serum of 72 healthy volunteers as compared to 69 patients with non-alcoholic fatty liver disease and 69 patients with chronic hepatitis C virus infection. Our results reveal a significant upregulation of acid sphingomyelinase in the serum of patients with chronic liver disease as compared to healthy individuals (p<0.001). Especially in chronic hepatitis C infection acid sphingomyelinase activity correlated significantly with markers of hepatic injury (r=0.312, p=0.009) and showed a high discriminative power. Accumulation of various (dihydro-) ceramide species was identified in the serum of patients with non-alcoholic fatty liver disease (p<0.001) and correlated significantly to cholesterol (r=0.448, p<0.001) but showed a significant accumulation in patients with normal cholesterol values as well (p<0.001). Sphingosine, a further bioactive metabolite, was also upregulated in chronic liver disease (p<0.001). However, no significant correlation to markers of hepatic injury was identified. CONCLUSION: Chronic hepatitis C virus infection and non-alcoholic fatty liver disease induce a significant upregulation of serum acid sphingomyelinase which appears as a novel biomarker in chronic hepatopathies. Further studies are required to elucidate the potential of the sphingolipid signaling pathway as putative therapeutic target in chronic liver disease.


Asunto(s)
Hígado Graso/sangre , Hepatitis C Crónica/sangre , Hígado/metabolismo , Esfingomielina Fosfodiesterasa/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Estudios de Casos y Controles , Ceramidas/sangre , Hígado Graso/genética , Hígado Graso/patología , Femenino , Regulación de la Expresión Génica , Hepacivirus , Hepatitis C Crónica/genética , Hepatitis C Crónica/patología , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico , Transducción de Señal , Esfingomielina Fosfodiesterasa/genética , Esfingosina/sangre
14.
Biol Chem ; 396(6-7): 813-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25781541

RESUMEN

Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.


Asunto(s)
Movimiento Celular/fisiología , Proliferación Celular/fisiología , Fibroblastos/citología , Fibroblastos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
15.
Biochim Biophys Acta ; 1831(1): 239-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22889995

RESUMEN

Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that acts either on G protein-coupled S1P receptors on the cell surface or via intracellular target sites. In addition to the well established effects of S1P in angiogenesis, carcinogenesis and immunity, evidence is now continuously accumulating which demonstrates that S1P is an important regulator of fibrosis. The contribution of S1P to fibrosis is of a Janus-faced nature as S1P exhibits both pro- and anti-fibrotic effects depending on its site of action. Extracellular S1P promotes fibrotic processes in a S1P receptor-dependent manner, whereas intracellular S1P has an opposite effect and dampens a fibrotic reaction by yet unidentified mechanisms. Fibrosis is a result of chronic irritation by various factors and is defined by an excess production of extracellular matrix leading to tissue scarring and organ dysfunction. In this review, we highlight the general effects of extracellular and intracellular S1P on the multistep cascade of pathological fibrogenesis including tissue injury, inflammation and the action of pro-fibrotic cytokines that stimulate ECM production and deposition. In a second part we summarize the current knowledge about the involvement of S1P signaling in the development of organ fibrosis of the lung, kidney, liver, heart and skin. Altogether, it is becoming clear that targeting the sphingosine kinase-1/S1P signaling pathway offers therapeutic potential in the treatment of various fibrotic processes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.


Asunto(s)
Fibrosis/metabolismo , Fibrosis/patología , Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Humanos , Modelos Biológicos , Especificidad de Órganos , Esfingosina/metabolismo
16.
Cell Physiol Biochem ; 34(1): 119-33, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24977486

RESUMEN

BACKGROUND/AIMS: Ceramide kinase (CerK) catalyzes the generation of the sphingolipid ceramide-1-phosphate (C1P) which regulates various cellular functions including cell growth and death, and inflammation. Here, we used a novel catalytic inhibitor of CerK, NVP-231, and CerK knockout cells to investigate the contribution of CerK to proliferation and inflammation in renal mesangial cells and fibroblasts. METHODS: Cells were treated with NVP-231 and [(3)H]-thymidine incorporation into DNA, [(3)H]-arachidonic acid release, prostaglandin E2 (PGE2) synthesis, cell cycle distribution, and apoptosis were determined. RESULTS: Treatment of rat mesangial cells and mouse renal fibroblasts with NVP-231 decreased DNA synthesis, but not of agonist-stimulated arachidonic acid release or PGE2 synthesis. Similarly, proliferation but not arachidonic acid release or PGE2 synthesis was reduced in CERK knockout renal fibroblasts. The anti-proliferative effect of NVP-231 on mesangial cells was due to M phase arrest as determined using the mitosis markers phospho-histone H3, cdc2 and polo-like kinase-1, and induction of apoptosis. Moreover, loss of CerK sensitized cells towards stress-induced apoptosis. CONCLUSIONS: Our data demonstrate that CerK induces proliferation but not PGE2 formation of renal mesangial cells and fibroblasts, and suggest that targeted CerK inhibition has potential for treating mesangioproliferative kidney diseases.


Asunto(s)
Fibroblastos/metabolismo , Riñón/citología , Células Mesangiales/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ácido Araquidónico/metabolismo , Benzotiazoles/farmacología , Hidrocarburos Aromáticos con Puentes/farmacología , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Dinoprostona/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Técnicas de Inactivación de Genes , Histonas/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Células Mesangiales/citología , Células Mesangiales/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Quinasa Tipo Polo 1
17.
Matrix Biol ; 98: 32-48, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34015468

RESUMEN

The sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that is now appreciated as key regulatory factor for various cellular functions in the kidney, including matrix remodeling. It is generated by two sphingosine kinases (Sphk), Sphk1 and Sphk2, which are ubiquitously expressed, but have distinct enzymatic activities and subcellular localizations. In this study, we have investigated the role of Sphk2 in podocyte function and its contribution to diabetic nephropathy. We show that streptozotocin (STZ)-induced nephropathy and albuminuria in mice is prevented by genetic depletion of Sphk2. This protection correlated with an increased protein expression of the transcription factor Wilm's tumor suppressor gene 1 (WT1) and its target gene nephrin, and a reduced macrophage infiltration in immunohistochemical renal sections of STZ-treated Sphk2-/- mice compared to STZ-treated wildtype mice. To investigate changes on the cellular level, we used an immortalized human podocyte cell line and generated a stable knockdown of Sphk2 (Sphk2-kd) by a lentiviral transduction method. These Sphk2-kd cells accumulated sphingosine as a consequence of the knockdown, and showed enhanced nephrin and WT1 mRNA and protein expressions similar to the finding in Sphk2 knockout mice. Treatment of wildtype podocytes with the highly selective Sphk2 inhibitor SLM6031434 caused a similar upregulation of nephrin and WT1 expression. Furthermore, exposing cells to the profibrotic mediator transforming growth factor ß (TGFß) resulted on the one side in reduced nephrin and WT1 expression, but on the other side, in upregulation of various profibrotic marker proteins, including connective tissue growth factor (CTGF), fibronectin (FN) and plasminogen activator inhibitor (PAI) 1. All these effects were reverted by Sphk2-kd and SLM6031434. Mechanistically, the protection by Sphk2-kd may depend on accumulated sphingosine and inhibited PKC activity, since treatment of cells with exogenous sphingosine not only reduced the phosphorylation pattern of PKC substrates, but also increased WT1 protein expression. Moreover, the selective stable knockdown of PKCδ increased WT1 expression, suggesting the involvement of this PKC isoenzyme in WT1 regulation. The glucocorticoid dexamethasone, which is a treatment option in many glomerular diseases and is known to mediate a nephroprotection, not only downregulated Sphk2 and enhanced cellular sphingosine, but also enhanced WT1 and nephrin expressions, thus, suggesting that parts of the nephroprotective effect of dexamethasone is mediated by Sphk2 downregulation. Altogether, our data demonstrated that loss of Sphk2 is protective in diabetes-induced podocytopathy and can prevent proteinuria, which is a hallmark of many glomerular diseases. Thus, Sphk2 could serve as a new attractive pharmacological target to treat proteinuric kidney diseases.


Asunto(s)
Nefropatías Diabéticas , Fosfotransferasas (Aceptor de Grupo Alcohol) , Podocitos , Proteínas WT1 , Albuminuria/genética , Animales , Nefropatías Diabéticas/genética , Genes Supresores de Tumor , Proteínas de la Membrana , Ratones , Ratones Noqueados , Estreptozocina
18.
Neuropharmacology ; 186: 108464, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33460688

RESUMEN

The sphingosine 1-phosphate (S1P) receptor 1 (S1P1) has emerged as a therapeutic target for the treatment of multiple sclerosis (MS). Fingolimod (FTY720) is the first functional antagonist of S1P1 that has been approved for oral treatment of MS. Previously, we have developed novel butterfly derivatives of FTY720 that acted similar to FTY720 in reducing disease symptoms in a mouse model of experimental autoimmune encephalomyelitis (EAE). In this study, we have synthesized a piperidine derivative of the oxazolo-oxazole compounds, denoted ST-1505, and its ring-opened analogue ST-1478, and characterised their in-vitro and in-vivo functions. Notably, the 3-piperidinopropyloxy moiety resembles a structural motif of pitolisant, a drug with histamine H3R antagonistic/inverse agonist activity approved for the treatment of narcolepsy. Both novel compounds exerted H3R affinities, and in addition, ST-1505 was characterised as a dual S1P1+3 agonist, whereas ST-1478 was a dual S1P1+5 agonist. Both multitargeting compounds were also active in mice and reduced the lymphocyte numbers as well as diminished disease symptoms in the mouse model of MS. The effect of ST-1478 was dependent on SK-2 activity suggesting that it is a prodrug like FTY720, but with a more selective S1P receptor activation profile, whereas ST-1505 is a fully active drug even in the absence of SK-2. In summary, these data suggest that the well soluble piperidine derivatives ST-1505 and ST-1478 hold promise as novel drugs for the treatment of MS and other autoimmune or inflammatory diseases, and by their H3R antagonist potency, they might additionally improve cognitive impairment during disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/prevención & control , Clorhidrato de Fingolimod/administración & dosificación , Antagonistas de los Receptores Histamínicos H3/administración & dosificación , Esclerosis Múltiple/prevención & control , Fármacos Neuroprotectores/administración & dosificación , Receptores de Esfingosina-1-Fosfato/agonistas , Animales , Células CHO , Cricetinae , Cricetulus , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Clorhidrato de Fingolimod/análogos & derivados , Clorhidrato de Fingolimod/química , Antagonistas de los Receptores Histamínicos H3/química , Antagonistas de los Receptores Histamínicos H3/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/metabolismo , Fármacos Neuroprotectores/química , Estructura Secundaria de Proteína , Receptores de Esfingosina-1-Fosfato/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-33010454

RESUMEN

BACKGROUND: Several studies revealed alterations of single sphingolipid species, such as chain length-specific ceramides, in plasma and serum of patients with kidney diseases. Here, we investigated whether such alterations occur in kidney tissue from patients and mice suffering from renal fibrosis, the common endpoint of chronic kidney diseases. METHODS: Human fibrotic kidney samples were collected from nephrectomy specimens with hydronephrosis and/or pyelonephritis. Healthy parts from tumor nephrectomies served as nonfibrotic controls. Mouse fibrotic kidney samples were collected from male C57BL/6J mice treated with an adenine-rich diet for 14 days or were subjected to 7 days of unilateral ureteral obstruction (UUO). Kidneys of untreated mice and contralateral kidneys (UUO) served as respective controls. Sphingolipid levels were detected by LC-MS/MS. Fibrotic markers were analyzed by TaqMan® analysis and immunohistology. RESULTS: Very long-chain ceramides Cer d18:1/24:0 and Cer d18:1/24:1 were significantly downregulated in both fibrotic human kidney cortex and fibrotic murine kidney compared to respective control samples. These effects correlate with upregulation of COL1α1, COL3α1 and αSMA expression in fibrotic human kidney cortex and fibrotic mouse kidney. CONCLUSION: We have shown that very long-chain ceramides Cer d18:1/24:0 and Cer d18:1/24:1 are consistently downregulated in fibrotic kidney samples from human and mouse. Our findings support the use of in vivo murine models as appropriate translational means to understand the involvement of ceramides in human kidney diseases. In addition, our study raises interesting questions about the possible manipulation of ceramide metabolism to prevent progression of fibrosis and the use of ceramides as potential biomarkers of chronic kidney disease.


Asunto(s)
Ceramidas/metabolismo , Hidronefrosis/metabolismo , Pielonefritis/metabolismo , Esfingolípidos/metabolismo , Obstrucción Ureteral/metabolismo , Actinas/genética , Actinas/metabolismo , Adenina/administración & dosificación , Anciano , Animales , Biomarcadores/metabolismo , Ceramidas/clasificación , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Regulación de la Expresión Génica , Humanos , Hidronefrosis/inducido químicamente , Hidronefrosis/genética , Hidronefrosis/patología , Riñón/metabolismo , Riñón/patología , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Pielonefritis/inducido químicamente , Pielonefritis/genética , Pielonefritis/patología , Esfingolípidos/clasificación , Obstrucción Ureteral/genética , Obstrucción Ureteral/patología
20.
Cell Signal ; 79: 109881, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33301900

RESUMEN

Renal fibrosis is characterized by chronic inflammation and excessive accumulation of extracellular matrix and progressively leads to functional insufficiency and even total loss of kidney function. In this study we investigated the anti-fibrotic potential of two highly selective and potent SK2 inhibitors, SLM6031434 and HWG-35D, in unilateral ureter obstruction (UUO), a model for progressive renal fibrosis, in mice. In both cases, treatment with SLM6031434 or HWG-35D resulted in an attenuated fibrotic response to UUO in comparison to vehicle-treated mice as demonstrated by reduced collagen accumulation and a decreased expression of collagen-1 (Col1), fibronectin-1 (FN-1), connective tissue growth factor (CTGF), and α-smooth muscle actin (α-SMA). Similar to our previous study in Sphk2-/- mice, we found an increased protein expression of Smad7, a negative regulator of the pro-fibrotic TGFß/Smad signalling cascade, accompanied by a strong accumulation of sphingosine in SK2 inhibitor-treated kidneys. Treatment of primary renal fibroblasts with SLM6031434 or HWG-35D dose-dependently increased Smad7 expression and ameliorated the expression of Col1, FN-1 and CTGF. In summary, these data prove the anti-fibrotic potential of SK2 inhibition in a mouse model of renal fibrosis, thereby validating SK2 as pharmacological target for the treatment of fibrosis in chronic kidney disease.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Fibrosis , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Insuficiencia Renal Crónica/enzimología , Insuficiencia Renal Crónica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA