Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur Heart J ; 42(9): 919-933, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33532862

RESUMEN

AIMS: While most patients with myocardial infarction (MI) have underlying coronary atherosclerosis, not all patients with coronary artery disease (CAD) develop MI. We sought to address the hypothesis that some of the genetic factors which establish atherosclerosis may be distinct from those that predispose to vulnerable plaques and thrombus formation. METHODS AND RESULTS: We carried out a genome-wide association study for MI in the UK Biobank (n∼472 000), followed by a meta-analysis with summary statistics from the CARDIoGRAMplusC4D Consortium (n∼167 000). Multiple independent replication analyses and functional approaches were used to prioritize loci and evaluate positional candidate genes. Eight novel regions were identified for MI at the genome wide significance level, of which effect sizes at six loci were more robust for MI than for CAD without the presence of MI. Confirmatory evidence for association of a locus on chromosome 1p21.3 harbouring choline-like transporter 3 (SLC44A3) with MI in the context of CAD, but not with coronary atherosclerosis itself, was obtained in Biobank Japan (n∼165 000) and 16 independent angiography-based cohorts (n∼27 000). Follow-up analyses did not reveal association of the SLC44A3 locus with CAD risk factors, biomarkers of coagulation, other thrombotic diseases, or plasma levels of a broad array of metabolites, including choline, trimethylamine N-oxide, and betaine. However, aortic expression of SLC44A3 was increased in carriers of the MI risk allele at chromosome 1p21.3, increased in ischaemic (vs. non-diseased) coronary arteries, up-regulated in human aortic endothelial cells treated with interleukin-1ß (vs. vehicle), and associated with smooth muscle cell migration in vitro. CONCLUSIONS: A large-scale analysis comprising ∼831 000 subjects revealed novel genetic determinants of MI and implicated SLC44A3 in the pathophysiology of vulnerable plaques.


Asunto(s)
Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Enfermedad de la Arteria Coronaria/genética , Células Endoteliales , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Japón , Infarto del Miocardio/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
2.
Curr Atheroscler Rep ; 19(2): 6, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28130654

RESUMEN

PURPOSE OF REVIEW: We provide an overview of our current understanding of the genetic architecture of coronary artery disease (CAD) and discuss areas of research that provide excellent opportunities for further exploration. RECENT FINDINGS: Large-scale studies in human populations, coupled with rapid advances in genetic technologies over the last decade, have clearly established the association of common genetic variation with risk of CAD. However, the effect sizes of the susceptibility alleles are for the most part modest and collectively explain only a small fraction of the overall heritability. By comparison, evidence that rare variants make a substantial contribution to risk of CAD has been somewhat disappointing thus far, suggesting that other biological mechanisms have yet to be discovered. Emerging data suggests that novel pathways involved in the development of CAD can be identified through complementary and integrative systems genetics strategies in mice or humans. There is also convincing evidence that gut bacteria play a previously unrecognized role in the development of CAD, particularly through metabolism of certain dietary nutrients that lead to proatherogenic metabolites in the circulation. A major effort is now underway to functionally understand the newly discovered genetic and biological associations for CAD, which could lead to the development of potentially novel therapeutic strategies. Other important areas of investigation for understanding the pathophysiology of CAD, including epistatic interactions between genes or with either sex and environmental factors, have not been studied on a broad scope and represent additional opportunities for future studies.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Alelos , Animales , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Factores de Riesgo
3.
medRxiv ; 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168321

RESUMEN

Objective: Epidemiological and genetic studies have reported inverse associations between circulating glycine levels and risk of coronary artery disease (CAD). However, these findings have not been consistently observed in all studies. We sought to evaluate the causal relationship between circulating glycine levels and atherosclerosis using large-scale genetic analyses in humans and dietary supplementation experiments in mice. Methods: Serum glycine levels were evaluated for association with prevalent and incident CAD in the UK Biobank. A multi-ancestry genome-wide association study (GWAS) meta-analysis was carried out to identify genetic determinants for circulating glycine levels, which were then used to evaluate the causal relationship between glycine and risk of CAD by Mendelian randomization (MR). A glycine feeding study was carried out with atherosclerosis-prone apolipoprotein E deficient (ApoE-/-) mice to determine the effects of increased circulating glycine levels on amino acid metabolism, metabolic traits, and aortic lesion formation. Results: Among 105,718 subjects from the UK Biobank, elevated serum glycine levels were associated with significantly reduced risk of prevalent CAD (Quintile 5 vs. Quintile 1 OR=0.76, 95% CI 0.67-0.87; P<0.0001) and incident CAD (Quintile 5 vs. Quintile 1 HR=0.70, 95% CI 0.65-0.77; P<0.0001) in models adjusted for age, sex, ethnicity, anti-hypertensive and lipid-lowering medications, blood pressure, kidney function, and diabetes. A meta-analysis of 13 GWAS datasets (total n=230,947) identified 61 loci for circulating glycine levels, of which 26 were novel. MR analyses provided modest evidence that genetically elevated glycine levels were causally associated with reduced systolic blood pressure and risk of type 2 diabetes, but did provide evidence for an association with risk of CAD. Furthermore, glycine-supplementation in ApoE-/- mice did not alter cardiometabolic traits, inflammatory biomarkers, or development of atherosclerotic lesions. Conclusions: Circulating glycine levels were inversely associated with risk of prevalent and incident CAD in a large population-based cohort. While substantially expanding the genetic architecture of circulating glycine levels, MR analyses and in vivo feeding studies in humans and mice, respectively, did not provide evidence that the clinical association of this amino acid with CAD represents a causal relationship, despite being associated with two correlated risk factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA