Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Ecol Lett ; 27(10): e14523, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39380337

RESUMEN

Changing CO2 concentrations will continue to affect plant growth with consequences for ecosystem functioning. The adaptive capacity of C3 photosynthesis to changing CO2 concentrations is, however, insufficiently investigated so far. Here, we focused on the phylogenetic dynamics of maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax)-two key determinants of photosynthetic capacity in C3 plants-and their relation to deep-time dynamics in species diversification, speciation and atmospheric CO2 concentrations during the last 80 million years. We observed positive relationships between photosynthetic capacity and species diversification as well as speciation rates. We furthermore observed a shift in the relationships between photosynthetic capacity, evolutionary dynamics and prehistoric CO2 fluctuations about 30 million years ago. From this, we deduce strong links between photosynthetic capacity and evolutionary dynamics in C3 plants. We furthermore conclude that low CO2 environments in prehistory might have changed adaptive processes within the C3 photosynthetic pathway.


Asunto(s)
Evolución Biológica , Dióxido de Carbono , Fotosíntesis , Filogenia , Plantas , Dióxido de Carbono/metabolismo , Plantas/genética , Atmósfera , Biodiversidad
2.
Plant Cell Environ ; 47(9): 3528-3540, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38940730

RESUMEN

Drought threatens plant growth and related ecosystem services. The emergence of plant drought stress under edaphic drought is well studied, whilst the importance of atmospheric drought only recently gained momentum. Yet, little is known about the interaction and relative contribution of edaphic and atmospheric drought on the emergence of plant drought stress. We conducted a gradient experiment, fully crossing gravimetric water content (GWC: maximum water holding capacity-permanent wilting point) and vapour pressure deficit (VPD: 1-2.25 kPa) using five wheat varieties from three species (Triticum monococcum, T. durum & T. aestivum). We quantified the occurrence of plant drought stress on molecular (abscisic acid), cellular (stomatal conductance), organ (leaf water potential) and stand level (evapotranspiration). Plant drought stress increased with decreasing GWC across all organizational levels. This effect was magnified nonlinearly by VPD after passing a critical threshold of soil water availability. At around 20%GWC (soil matric potential 0.012 MPa), plants lost their ability to regulate leaf water potential via stomata regulation, followed by the emergence of hydraulic dysfunction. The emergence of plant drought stress is characterized by changing relative contributions of soil versus atmosphere and their non-linear interaction. This highly non-linear response is likely to abruptly alter plant-related ecosystem services in a drying world.


Asunto(s)
Atmósfera , Sequías , Hojas de la Planta , Estomas de Plantas , Suelo , Estrés Fisiológico , Triticum , Agua , Triticum/fisiología , Agua/fisiología , Agua/metabolismo , Suelo/química , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Ácido Abscísico/metabolismo , Presión de Vapor
3.
Physiol Plant ; 175(6): e14081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148203

RESUMEN

Climate change is expected to decrease water availability in many agricultural production areas around the globe. At the same time renewable energy concepts such as agrivoltaics (AV) are necessary to manage the energy transition. Several studies showed that evapotranspiration can be reduced in AV systems, resulting in increased water availability for crops. However, effects on crop performance and productivity remain unclear to date. Carbon-13 isotopic composition (δ13 C and discrimination against carbon-13) can be used as a proxy for the effects of water availability on plant performance, integrating crop responses over the entire growing season. The aim of this study was to assess these effects via carbon isotopic composition in grains, as well as grain yield of winter wheat in an AV system in southwest Germany. Crops were cultivated over four seasons from 2016-2020 in the AV system and on an unshaded adjacent reference (REF) site. Across all seasons, average grain yield did not significantly differ between AV and REF (4.7 vs 5.2 t ha-1 ), with higher interannual yield stability in the AV system. However, δ13 C as well as carbon-13 isotope discrimination differed significantly across the seasons by 1‰ (AV: -29.0‰ vs REF: -28.0‰ and AV: 21.6‰ vs REF: 20.6‰) between the AV system and the REF site. These drought mitigation effects as indicated by the results of this study will become crucial for the resilience of agricultural production in the near future when drought events will become significantly more frequent and severe.


Asunto(s)
Sequías , Triticum , Triticum/fisiología , Estaciones del Año , Grano Comestible , Productos Agrícolas , Agua
4.
J Environ Sci (China) ; 125: 723-734, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375953

RESUMEN

Cadmium (Cd) pollution of agricultural soil is of public concern due to its high potential toxicity and mobility. This study aimed to reveal the risk of Cd accumulation in soil and wheat/maize systems, with a specific focus on the source-specific ecological risk, human health risk and Cd enrichment model. For this we investigated more than 6100 paired soil and grain samples with 216 datasets including soil Cd contents, soil pH and grain Cd contents of 85 sites from China. The results showed that mining activities, sewage irrigation, industrial activities and agricultural practices were the critical factors causing Cd accumulation in wheat and maize cultivated sites. Thereinto, mining activities contributed to a higher Cd accumulation risk in the southwest China and Middle Yellow River regions; sewage irrigation influenced the Cd accumulation in the North China Plain. In addition, the investigated sites were classified into different categories by comparing their soil and grain Cd contents with the Chinese soil screening values and food safety values, respectively. Cd enrichment models were developed to predict the Cd levels in wheat and maize grains. The results showed that the models exhibited a good performance for predicting the grain Cd contents among safe and warning sites of wheat (R2 = 0.61 and 0.72, respectively); while the well-fitted model for maize was prone to the overestimated sites (R2 = 0.77). This study will provide national viewpoints for the risk assessments and prediction of Cd accumulation in soil and wheat/maize systems.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Cadmio/análisis , Triticum/química , Zea mays , Contaminantes del Suelo/análisis , Aguas del Alcantarillado/análisis , Suelo/química , Grano Comestible/química , Medición de Riesgo , China , Metales Pesados/análisis
5.
Ecol Lett ; 25(2): 416-426, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34786803

RESUMEN

In lichen symbioses, fungal secondary metabolites provide UV protection on which lichen algae such as trebouxiophycean green algae-the most prominent group of photobionts in lichen symbioses-sensitively depend. These metabolites differ in their UV absorbance capability and solvability, and thus vary in their propensity of being leached from the lichen body in humid and warm environments, with still unknown implications for the global distribution of lichens. In this study covering more than 10,000 lichenised fungal species, we show that the occurrence of fungal-derived metabolites in combination with their UV absorbance capability and their probability of being leached in warm and humid environments are important eco-evolutionary drivers of global lichen distribution. Fungal-derived UV protection seems to represent an indirect environmental adaptation in which the lichen fungus invests to protect the trebouxiophycean photobiont from high UV radiation in warm and humid climates and, by doing this, secures its carbon source.


Asunto(s)
Chlorophyta , Líquenes , Evolución Biológica , Clima , Filogenia , Simbiosis
6.
New Phytol ; 230(4): 1653-1664, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33533483

RESUMEN

A flexible use of the crassulacean acid metabolism (CAM) has been hypothesised to represent an intermediate stage along a C3 to full CAM evolutionary continuum, when relative contributions of C3 vs CAM metabolism are co-determined by evolutionary history and prevailing environmental constraints. However, evidence for such eco-evolutionary interdependencies is lacking. We studied these interdependencies for the leaf-succulent genus Drosanthemum (Aizoaceae, Southern African Succulent Karoo) by testing for relationships between leaf δ13 C diagnostic for CAM dependence (i.e. contribution of C3 and CAM to net carbon gain), and climatic variables related to temperature and precipitation and their temporal variation. We further quantified the effects of shared phylogenetic ancestry on CAM dependence and its relation to climate. CAM dependence is predicted by rainfall and its temporal variation, with high predictive power of rainfall constancy (temporal entropy). The predictive power of rainfall seasonality and temperature-related variables was negligible. Evolutionary history of the tested clades significantly affected the relationship between rainfall constancy and CAM dependence. We argue that higher CAM dependence might provide an adaptive advantage in increasingly unpredictable rainfall environments when the anatomic exaptation (succulence) is already present. These observations might shed light on the evolution of full CAM.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Fotosíntesis , Dióxido de Carbono , Filogenia , Hojas de la Planta
7.
New Phytol ; 227(5): 1294-1306, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32255502

RESUMEN

Biomes are constructs for organising knowledge on the structure and functioning of the world's ecosystems, and serve as useful units for monitoring how the biosphere responds to anthropogenic drivers, including climate change. The current practice of delimiting biomes relies on expert knowledge. Recent studies have questioned the value of such biome maps for comparative ecology and global-change research, partly due to their subjective origin. Here we propose a flexible method for developing biome maps objectively. The method uses range modelling of several thousands of plant species to reveal spatial attractors for different growth-form assemblages that define biomes. The workflow is illustrated using distribution data from 23 500 African plant species. In an example application, we create a biome map for Africa and use the fitted species models to project biome shifts. In a second example, we map gradients of growth-form suitability that can be used to identify sites for comparative ecology. This method provides a flexible framework that (1) allows a range of biome types to be defined according to user needs and (2) enables projections of biome changes that emerge purely from the individualistic responses of plant species to environmental changes.


Asunto(s)
Ecología , Ecosistema , África , Cambio Climático , Plantas
8.
Ecol Lett ; 21(11): 1629-1638, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30141251

RESUMEN

A fundamental challenge in experimental ecology is to capture nonlinearities of ecological responses to interacting environmental drivers. Here, we demonstrate that gradient designs outperform replicated designs for detecting and quantifying nonlinear responses. We report the results of (1) multiple computer simulations and (2) two purpose-designed empirical experiments. The findings consistently revealed that unreplicated sampling at a maximum number of sampling locations maximised prediction success (i.e. the R² to the known truth) irrespective of the amount of stochasticity and the underlying response surfaces, including combinations of two linear, unimodal or saturating drivers. For the two empirical experiments, the same pattern was found, with gradient designs outperforming replicated designs in revealing the response surfaces of underlying drivers. Our findings suggest that a move to gradient designs in ecological experiments could be a major step towards unravelling underlying response patterns to continuous and interacting environmental drivers in a feasible and statistically powerful way.


Asunto(s)
Simulación por Computador , Ecología , Ecosistema
9.
Environ Pollut ; 357: 124406, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38925211

RESUMEN

Due to integrated pollution prevention and control measures and the reduced burning of coal, air concentrations of mercury (Hg0) are currently levelling off. In the future, however, evasion from land surfaces will probably reverse this trend. Reasons are the rising temperatures and the loss of forest cover caused by calamities, droughts, storms and wildfires. Plant leaves constitute an important matrix for the accumulation of gaseous mercury and uptake and re-volatilisation by plants depends on the species, the vitality and the age and morphology of leaf organs. It has been shown that older conifer needles show higher concentrations than young needles and Hg accumulation is increasing throughout the season. In present study, we collected branches from Norway Spruce (Picea abies) in a former cinnabar mining region in Northern Palatinate, where artisanal and small-scale mining left innumerable waste dumps. While mining, smelting and processing of the ores were terminated during WWII, high total mercury concentrations remained in the top soils locally, with presumably only small fractions being plant available. In the lab, up to seven needle age classes were analysed. 1000 needle weights increased with age and as expected, also the Hg concentrations were elevated in the older needles. Needle concentrations were higher than those reported from other national biomonitoring programs confirming the regional imprint from legacy mercury. To complement our biomonitoring study, we collected edible mushrooms in former mining areas. Hg concentrations in most samples exceeded the EU maximum residue levels (MRL), while only a few broke the existing cadmium and lead limits. Tolerable weekly intake (TWI) for inorganic mercury would be surpassed with the consumption of a small portion of mushrooms. Further studies should be performed on the outgassing of Hg from mine wastes and the incorporation of Hg in the local food web, including its methylation and biomagnification.


Asunto(s)
Monitoreo del Ambiente , Mercurio , Minería , Hojas de la Planta , Contaminantes del Suelo , Mercurio/análisis , Mercurio/metabolismo , Monitoreo del Ambiente/métodos , Hojas de la Planta/química , Alemania , Contaminantes del Suelo/análisis , Agaricales/química , Picea/química , Tracheophyta/química , Compuestos de Mercurio
10.
Nat Ecol Evol ; 8(5): 888-900, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409318

RESUMEN

Forecasting the risks of climate change for species and ecosystems is necessary for developing targeted conservation strategies. Previous risk assessments mapped the exposure of the global land surface to changes in climate. However, this procedure is unlikely to robustly identify priority areas for conservation actions because nonlinear physiological responses and colimitation processes ensure that ecological changes will not map perfectly to the forecast climatic changes. Here, we combine ecophysiological growth models of 135,153 vascular plant species and plant growth-form information to transform ambient and future climatologies into phytoclimates, which describe the ability of climates to support the plant growth forms that characterize terrestrial ecosystems. We forecast that 33% to 68% of the global land surface will experience a significant change in phytoclimate by 2070 under representative concentration pathways RCP 2.6 and RCP 8.5, respectively. Phytoclimates without present-day analogue are forecast to emerge on 0.3-2.2% of the land surface and 0.1-1.3% of currently realized phytoclimates are forecast to disappear. Notably, the geographic pattern of change, disappearance and novelty of phytoclimates differs markedly from the pattern of analogous trends in climates detected by previous studies, thereby defining new priorities for conservation actions and highlighting the limits of using untransformed climate change exposure indices in ecological risk assessments. Our findings suggest that a profound transformation of the biosphere is underway and emphasize the need for a timely adaptation of biodiversity management practices.


Asunto(s)
Cambio Climático , Ecosistema , Conservación de los Recursos Naturales , Medición de Riesgo , Predicción , Plantas , Modelos Biológicos , Desarrollo de la Planta
11.
Sci Total Environ ; 948: 174808, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39019264

RESUMEN

Atmospheric reactive nitrogen (Nr) deposition has been modified significantly by human activities such as agriculture and fossil fuel combustion. Understanding the changes in Nr deposition is essential for maintaining the functionality and sustainability of ecosystems. Taking Beijing as a case study, we report long-term measurements of wet Nr deposition from 1999 to 2022 and dry Nr deposition from 2010 to 2022 and their relationship with China's air pollution control. Total Nr deposition to Beijing decreased by 34 % during 2010-2022, mainly caused by a decrease in dry N deposition by 54.27 %, from 47.86 kg N ha-1 yr-1 in 2010-2014 to 21.89 kg N ha-1 yr-1 in 2018-2022; reduced and oxidized N in dry deposition decreased by 29.93 % and 72.05 %, respectively. This was a result of the "Action Plan for Prevention and Control of Air Pollution (APCP)" and the implementation of the "Zero Growth in Fertilizer Use by 2020" in 2015. Our ground-based measurements provide evidence to support recent achievements in air pollution control and a reference and guidance for other regions of China and other countries for abating Nr pollution.

12.
Front Plant Sci ; 14: 1140938, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008480

RESUMEN

Carbon-water trade-offs in plants are adjusted through stomatal regulation. Stomatal opening enables carbon uptake and plant growth, whereas plants circumvent drought by closing stomata. The specific effects of leaf position and age on stomatal behavior remain largely unknown, especially under edaphic and atmospheric drought. Here, we compared stomatal conductance (gs ) across the canopy of tomato during soil drying. We measured gas exchange, foliage ABA level and soil-plant hydraulics under increasing vapor pressure deficit (VPD). Our results indicate a strong effect of canopy position on stomatal behavior, especially under hydrated soil conditions and relatively low VPD. In wet soil (soil water potential > -50 kPa), upper canopy leaves had the highest gs (0.727 ± 0.154 mol m-2 s-1) and assimilation rate (A; 23.4 ± 3.9 µmol m-2 s-1) compared to the leaves at a medium height of the canopy (gs : 0.159 ± 0.060 mol m2 s-1; A: 15.9 ± 3.8 µmol m-2 s-1). Under increasing VPD (from 1.8 to 2.6 kPa), gs , A and transpiration were initially impacted by leaf position rather than leaf age. However, under high VPD (2.6 kPa), age effect outweighed position effect. The soil-leaf hydraulic conductance was similar in all leaves. Foliage ABA levels increased with rising VPD in mature leaves at medium height (217.56 ± 85 ng g-1 FW) compared to upper canopy leaves (85.36 ± 34 ng g-1 FW). Under soil drought (< -50 kPa), stomata closed in all leaves resulting in no differences in gs across the canopy. We conclude that constant hydraulic supply and ABA dynamics facilitate preferential stomatal behavior and carbon-water trade-offs across the canopy. These findings are fundamental in understanding variations within the canopy, which helps in engineering future crops, especially in the face of climate change.

13.
Plant Direct ; 7(8): e519, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37600238

RESUMEN

With ongoing climate change and the increase in extreme weather events, especially droughts, the challenge of maintaining food security is becoming ever greater. Locally adapted landraces of crops represent a valuable source of adaptation to stressful environments. In the light of future droughts-both by altered soil water supply and increasing atmospheric water demand (vapor pressure deficit [VPD])-plants need to improve their water efficiency. To do so, plants can enhance their access to soil water by improving rhizosphere hydraulic conductivity via the exudation of mucilage. Furthermore, plants can reduce transpirational water loss via stomatal regulation. Although the role of mucilage and stomata regulation on plant water management have been extensively studied, little is known about a possible coordination between root mucilage properties and stomatal sensitivity as well as abiotic drivers shaping the development of drought resistant trait suits within landraces. Mucilage properties and stomatal sensitivity of eight Mexican landraces of Zea mays in contrast with one inbred line were first quantified under controlled conditions and second related to water demand and supply at their respective site of origin. Mucilage physical properties-namely, viscosity, contact angle, and surface tension-differed between the investigated maize varieties. We found strong influences of precipitation seasonality, thus plant water availability, on mucilage production (R 2 = .88, p < .01) and mucilage viscosity (R 2 = .93, p < .01). Further, stomatal sensitivity to increased atmospheric water demand was related to mucilage viscosity and contact angle, both of which are crucial in determining mucilage's water repellent, thus maladaptive, behavior upon soil drying. The identification of landraces with pre-adapted suitable trait sets with regard to drought resistance is of utmost importance, for example, trait combinations such as exhibited in one of the here investigated landraces. Our results suggest a strong environmental selective force of seasonality in plant water availability on mucilage properties as well as regulatory stomatal effects to avoid mucilage's maladaptive potential upon drying and likely delay critical levels of hydraulic dysfunction. By this, landraces from highly seasonal climates may exhibit beneficial mucilage and stomatal traits to prolong plant functioning under edaphic drought. These findings may help breeders to efficiently screen for local landraces with pre-adaptations to drought to ultimately increase crop yield resistance under future climatic variability.

14.
Nat Commun ; 14(1): 7890, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036522

RESUMEN

A prominent hypothesis in ecology is that larger species ranges are found in more variable climates because species develop broader environmental tolerances, predicting a positive range size-temperature variability relationship. However, this overlooks the extreme temperatures that variable climates impose on species, with upper or lower thermal limits more likely to be exceeded. Accordingly, we propose the 'temperature range squeeze' hypothesis, predicting a negative range size-temperature variability relationship. We test these contrasting predictions by relating 88,000 elevation range sizes of vascular plants in 44 mountains to short- and long-term temperature variation. Consistent with our hypothesis, we find that species' range size is negatively correlated with diurnal temperature range. Accurate predictions of short-term temperature variation will become increasingly important for extinction risk assessment in the future.


Asunto(s)
Clima , Ecosistema , Temperatura , Calor , Cambio Climático
15.
NPJ Biodivers ; 2(1): 10, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-39242713

RESUMEN

Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species distribution modelling, and to propose potential solutions to explicitly test and account for them. Our major goal is not to propose methods to remove spatial bias from the modelling procedure, which would be impossible without proper knowledge of all the processes generating it, but rather to propose alternatives to explore and handle it. In particular, we propose and describe three main strategies that may provide a fair account of spatial bias, namely: (i) how to represent spatial bias; (ii) how to simulate null models based on virtual species for testing biogeographical and species distribution hypotheses; and (iii) how to make use of spatial bias - in particular related to sampling effort - as a leverage instead of a hindrance in species distribution modelling. We link these strategies with good practice in accounting for spatial bias in species distribution modelling.

16.
Sci Total Environ ; 851(Pt 1): 158018, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987241

RESUMEN

Tea (Camellia sinensis) is a popular beverage that is consumed globally. However, a better understanding of potentially toxic elements (PTEs) content in tea leaves and infusion is necessary to minimize risk on human health. Therefore, 249 tea samples (grown in different areas) covering six types of tea were collected in China to investigate the PTEs contents, identify their potential source and assess the health risk associated with drinking tea. PTE contents in tea leaves across six tea types were ND-0.900 (Cd), 0.005-2.133 (As), ND-5.679 (Pb), ND-13.86 (Cr), 1.601-22.93 (Ni), ND-2.048 (Se), 0.109-622.4 (F), 13.02-269.9 (Rb), 1.845-50.88 (Sr), and 2.796-53.23 (Ba) mg/kg. The result of tea infusion showed that 14.3 %-44.1 % (green tea), 14.5 %-46.7 % (black tea), 10.5 %-25.3 % (dark tea), 13.6 %-34.2 % (oolong tea), 16.9 %-40.7 % (yellow tea), and 19.9 %-35.1 % (white tea) of F were released. All tea types, except green tea, exhibited comparatively low leachability of Cd, As, Pb and Cr in tea infusion. The source apportionment revealed that PTEs in tea leaves mainly originated from soil parental materials, while industrial activities, fertilizer application, and manufacturing processes may contribute to exogenous Se, Cd, As, and Cr accumulation. Health risk assessment indicated that F in tea infusion dominated the health risk. Humans may be exposed to a higher health risk by drinking green tea compared to that of other tea types. Nevertheless, the long-term tea consumption is less likely to contribute to pronounced non-carcinogenic and carcinogenic risks. This study confirmed that tea consumption is an important and direct pathway of PTEs uptake in humans. The health risk associated with drinking tea should be of concern.


Asunto(s)
Camellia sinensis , Metales Pesados , Contaminantes del Suelo , Cadmio , China , Monitoreo del Ambiente , Fertilizantes , Humanos , Plomo , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis ,
17.
Front Neurosci ; 15: 672161, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054420

RESUMEN

Autonomous flight for large aircraft appears to be within our reach. However, launching autonomous systems for everyday missions still requires an immense interdisciplinary research effort supported by pointed policies and funding. We believe that concerted endeavors in the fields of neuroscience, mathematics, sensor physics, robotics, and computer science are needed to address remaining crucial scientific challenges. In this paper, we argue for a bio-inspired approach to solve autonomous flying challenges, outline the frontier of sensing, data processing, and flight control within a neuromorphic paradigm, and chart directions of research needed to achieve operational capabilities comparable to those we observe in nature. One central problem of neuromorphic computing is learning. In biological systems, learning is achieved by adaptive and relativistic information acquisition characterized by near-continuous information retrieval with variable rates and sparsity. This results in both energy and computational resource savings being an inspiration for autonomous systems. We consider pertinent features of insect, bat and bird flight behavior as examples to address various vital aspects of autonomous flight. Insects exhibit sophisticated flight dynamics with comparatively reduced complexity of the brain. They represent excellent objects for the study of navigation and flight control. Bats and birds enable more complex models of attention and point to the importance of active sensing for conducting more complex missions. The implementation of neuromorphic paradigms for autonomous flight will require fundamental changes in both traditional hardware and software. We provide recommendations for sensor hardware and processing algorithm development to enable energy efficient and computationally effective flight control.

18.
Biol Rev Camb Philos Soc ; 94(1): 1-15, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29877019

RESUMEN

Increasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self-sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of 'ecological memory' into trophic rewilding. The ecological memory of an ecosystem is defined as an ecosystem's accumulated abiotic and biotic material and information legacies from past dynamics. By summarising existing knowledge about the ecological effects of megafauna extinction and rewilding across a large range of spatial and temporal scales, we identify two key drivers of ecosystem responses to trophic rewilding: (i) impact potential of (re)introduced megafauna, and (ii) ecological memory characterising the focal ecosystem. The impact potential of (re)introduced megafauna species can be estimated from species properties such as lifetime per capita engineering capacity, population density, home range size and niche overlap with resident species. The importance of ecological memory characterising the focal ecosystem depends on (i) the absolute time since megafauna loss, (ii) the speed of abiotic and biotic turnover, (iii) the strength of species interactions characterising the focal ecosystem, and (iv) the compensatory capacity of surrounding source ecosystems. These properties related to the focal and surrounding ecosystems mediate material and information legacies (its ecological memory) and modulate the net ecosystem impact of (re)introduced megafauna species. We provide practical advice about how to quantify all these properties while highlighting the strong link between ecological memory and historically contingent ecosystem trajectories. With this newly established ecological memory-rewilding framework, we hope to guide future empirical studies that investigate the ecological effects of trophic rewilding and other ecosystem-restoration approaches. The proposed integrated conceptual framework should also assist managers and decision makers to anticipate the possible trajectories of ecosystem dynamics after restoration actions and to weigh plausible alternatives. This will help practitioners to develop adaptive management strategies for trophic rewilding that could facilitate sustainable management of functioning ecosystems in an increasingly human-dominated world.

19.
Data Brief ; 24: 103942, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31080858

RESUMEN

The diversity of alpine grassland species and their functional traits constitute alpine ecosystem functioning and services that support human-wellbeing. However, alpine grassland diversity is threatened by land use and climate change. Field surveys and monitoring are necessary to understand and preserve such endangered ecosystems. Here we describe data on abundances (percentage cover) of 247 alpine plant species (including mosses and lichens) inside nine 20 m by 20 m plots that were subdivided into 2 m by 2 m subplots. The nine plots are located in Gran Paradiso National Park, Italy. They cover three distinct alpine vegetation subtypes ('pure' natural grassland, sparsely vegetated 'rocky' grassland, and wetland) in each of three valleys (Bardoney, Colle de Nivolet and Levionaz) between 2200 and 2700 m a.s.l., i.e. above the treeline. The vegetation survey was conducted in 2015 at the peak of vegetation development during August. The dataset is provided as supplementary material and associated with the research article "Optimizing sampling effort and information content of biodiversity surveys: a case study of alpine grassland" [1]. See [1] for data interpretation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA