RESUMEN
Neuroscience research is changing at an incredible pace due to technological innovation and recent national and global initiatives such as the BRAIN initiative. Given the wealth of data supporting the value of course-based undergraduate research experiences (CUREs) for students, we developed and assessed a neurotechnology CURE, Mapping the Brain. The goal of the course is to immerse undergraduate and graduate students in research and to explore technological advances in neuroscience. In the laboratory portion of the course, students pursued a hypothesis-driven, collaborative National Institutes of Health (NIH) research project. Using chemogenetic technology (Designer Receptors Exclusively Activated by Designer Drugs-DREADDs) and a recombinase-based intersectional genetic strategy, students mapped norepinephrine neurons, and their projections and explored the effects of activating these neurons in vivo. In lecture, students compared traditional and cutting-edge neuroscience methodologies, analyzed primary literature, designed hypothesis-based experiments, and discussed technological limitations of studying the brain. Over two consecutive years in the Program at North Carolina State University, we assessed student learning and perceptions of learning based on Society for Neuroscience's (SfN) core concepts and essential principles of neuroscience. Using analysis of student assignments and pre/post content and perception-based course surveys, we also assessed whether the course improved student research article analysis and neurotechnology assessment. Our analyses reveal new insights and pedagogical approaches for engaging students in research and improving their critical analysis of research articles and neurotechnologies. Our data also show that our multifaceted approach increased student confidence and promoted a data focused mentality when tackling research literature. Through the integration of authentic research and a neurotechnology focus, Mapping the Brain provides a unique model as a modern neuroscience laboratory course.
RESUMEN
Relapse represents one of the most significant problems in the long-term treatment of drug addiction. Cocaine blocks plasma membrane monoamine transporters and increases dopamine (DA) overflow in the brain, and DA is critical for the motivational and primary reinforcing effects of the drug as well as cocaine-primed reinstatement of cocaine seeking in rats, a model of relapse. Thus, modulators of the DA system may be effective for the treatment of cocaine dependence. The endogenous neuropeptide galanin inhibits DA transmission, and both galanin and the synthetic galanin receptor agonist, galnon, interfere with some rewarding properties of cocaine. The purpose of this study was to further assess the effects of galnon on cocaine-induced behaviors and neurochemistry in rats. We found that galnon attenuated cocaine-induced motor activity, reinstatement and DA overflow in the frontal cortex at a dose that did not reduce baseline motor activity, stable self-administration of cocaine, baseline extracellular DA levels or cocaine-induced DA overflow in the nucleus accumbens (NAc). Similar to cocaine, galnon had no effect on stable food self-administration but reduced food-primed reinstatement. These results indicate that galnon can diminish cocaine-induced hyperactivity and relapse-like behavior, possibly in part by modulating DA transmission in the frontal cortex.
Asunto(s)
Cocaína/farmacología , Cumarinas/farmacología , Inhibidores de Captación de Dopamina/farmacología , Lóbulo Frontal/metabolismo , Animales , Trastornos Relacionados con Cocaína/fisiopatología , Trastornos Relacionados con Cocaína/prevención & control , Condicionamiento Operante , Dopamina/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Galanina/antagonistas & inhibidores , Masculino , Microdiálisis , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas Sprague-Dawley , Recurrencia , Refuerzo en Psicología , AutoadministraciónRESUMEN
Attending to salient sensory attributes of food, such as tastes that are new, displeasing, or unexpected, allows the procurement of nutrients without food poisoning. Exposure to new tastes is known to increase norepinephrine (NE) release in taste processing forebrain areas, yet the central source for this release is unknown. Locus ceruleus norepinephrine neurons (LC-NE) emerge as a candidate in signaling salient information about taste, as other salient sensory stimuli (e.g., visual, auditory, somatosensation) are known to activate LC neurons. To determine if LC neurons are sensitive to features of taste novelty, we used fiber photometry to record LC-NE activity in water-restricted mice that voluntarily licked either novel or familiar substances of differential palatability (saccharine, citric acid). We observed that LC-NE activity was suppressed during lick bursts and transiently activated upon the termination of licking and that these dynamics were independent of the familiarity of the substance consumed. We next recorded LC dynamics during brief and unexpected consumption of tastants and found no increase in LC-NE activity, despite their responsiveness to visual and auditory stimuli, revealing selectivity in LC's responses to salient sensory information. Our findings suggest that LC activity during licking is not influenced by taste novelty, implicating a possible role for non-LC noradrenergic nuclei in signaling critical information about taste.
Asunto(s)
Locus Coeruleus , Ratones Endogámicos C57BL , Norepinefrina , Gusto , Animales , Locus Coeruleus/fisiología , Masculino , Norepinefrina/metabolismo , Gusto/fisiología , Ratones , Percepción del Gusto/fisiología , Ácido Cítrico/metabolismo , Sacarina/administración & dosificación , Neuronas/fisiología , Femenino , Conducta Animal/fisiologíaRESUMEN
Background: Contextual fear learning is heavily dependent on the hippocampus. Despite evidence that catecholamines contribute to contextual encoding and memory retrieval, the precise temporal dynamics of their release in the hippocampus during behavior is unknown. In addition, new animal models are required to probe the effects of altered catecholamine synthesis on release dynamics and contextual learning. Methods: We generated 2 new mouse models of altered locus coeruleus-norepinephrine (NE) synthesis and utilized them together with GRABNE and GRABDA sensors and in vivo fiber photometry to investigate NE and dopamine (DA) release dynamics in the dorsal hippocampal CA1 during contextual fear conditioning. Results: Aversive foot shock increased both NE and DA release in the dorsal CA1, while freezing behavior associated with recall of fear memory was accompanied by decreased release. Moreover, we found that freezing at the recent time point was sensitive to both partial and complete loss of locus coeruleus-NE synthesis throughout prenatal and postnatal development, similar to previous observations of mice with global loss of NE synthesis beginning postnatally. In contrast, freezing at the remote time point was compromised only by complete loss of locus coeruleus-NE synthesis beginning prenatally. Conclusions: Overall, these findings provide novel insights into the role of NE in contextual fear and the precise temporal dynamics of both NE and DA during freezing behavior and highlight complex relationships between genotype, sex, and NE signaling.
RESUMEN
Recent data demonstrate that noradrenergic neurons of the locus coeruleus (LC-NE) are required for fear-induced suppression of feeding, but the role of endogenous LC-NE activity in natural, homeostatic feeding remains unclear. Here, we found that LC-NE activity was suppressed during food consumption, and the magnitude of this neural response was attenuated as mice consumed more pellets throughout the session, suggesting that LC responses to food are modulated by satiety state. Visual-evoked LC-NE activity was also attenuated in sated mice, suggesting that satiety state modulates LC-NE encoding of multiple behavioral states. We also found that food intake could be attenuated by brief or longer durations of LC-NE activation. Last, we found that activation of the LC to the lateral hypothalamus pathway suppresses feeding and enhances avoidance and anxiety-like responding. Our findings suggest that LC-NE neurons modulate feeding by integrating both external cues (e.g., anxiogenic environmental cues) and internal drives (e.g., satiety).
RESUMEN
The default mode network (DMN) of the brain is functionally associated with a wide range of behaviors. In this study, we used functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and spectral fiber photometry to investigate the selective neuromodulatory effect of norepinephrine (NE)-releasing noradrenergic neurons in the locus coeruleus (LC) on the mouse DMN. Chemogenetic-induced tonic LC activity decreased cerebral blood volume (CBV) and glucose uptake and increased synchronous low-frequency fMRI activity within the frontal cortices of the DMN. Fiber photometry results corroborated these findings, showing that LC-NE activation induced NE release, enhanced calcium-weighted neuronal spiking, and reduced CBV in the anterior cingulate cortex. These data suggest that LC-NE alters conventional coupling between neuronal activity and CBV in the frontal DMN. We also demonstrated that chemogenetic activation of LC-NE neurons strengthened functional connectivity within the frontal DMN, and this effect was causally mediated by reduced modulatory inputs from retrosplenial and hippocampal regions to the association cortices of the DMN.
RESUMEN
Dysregulation in signaling of the endocannabinoid 2-arachidonoylglycerol (2-AG) is implicated in hyperresponsiveness to stress. We hypothesized that blockade of monoacylglycerol lipase (MGL), the primary enzyme responsible for 2-AG deactivation in vivo, would produce context-dependent anxiolytic effects in rats. Environmental aversiveness was manipulated by varying illumination of an elevated plus maze. Percentage open arm time and numbers of open and closed arm entries were measured in rats receiving a single intraperitoneal (i.p.) injection of either vehicle, the MGL inhibitor JZL184 (1-8mg/kg), the benzodiazepine diazepam (1mg/kg), the cannabinoid CB(1) receptor antagonist rimonabant (1mg/kg), or JZL184 (8mg/kg) coadministered with rimonabant (1mg/kg). JZL184 (8mg/kg) produced anxiolytic-like effects (i.e., increased percentage open arm time and number of open arm entries) under high, but not low, levels of environmental aversiveness. Diazepam produced anxiolytic effects in either context. Rimonabant blocked the anxiolytic-like effects of JZL184, consistent with mediation by CB(1). Anxiolytic effects of JZL184 were preserved following chronic (8mg/kg per day×6 days) administration. Chronic and acute JZL184 treatment similarly enhanced behavioral sensitivity to an exogenous cannabinoid (WIN55,212-2; 2.5mg/kg i.p.) 24 or 72h following the terminal injection, suggesting a pervasive effect of MGL inhibition on the endocannabinoid system. We attribute our results to alterations in emotion rather than locomotor activity as JZL184 did not alter the number of closed arm entries in the plus maze or produce motor ataxia in the bar test. Our results demonstrate that JZL184 has beneficial, context-dependent effects on anxiety in rats, presumably via inhibition of MGL-mediated hydrolysis of 2-AG. These data warrant further testing of MGL inhibitors to elucidate the functional role of 2-AG in controlling anxiety and stress responsiveness. Our data further implicate a role for 2-AG in the regulation of emotion and validate MGL as a therapeutic target.
Asunto(s)
Ansiolíticos/uso terapéutico , Ansiedad/tratamiento farmacológico , Ácidos Araquidónicos/metabolismo , Benzodioxoles/uso terapéutico , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Glicéridos/metabolismo , Monoacilglicerol Lipasas/antagonistas & inhibidores , Piperidinas/uso terapéutico , Animales , Ansiolíticos/efectos adversos , Benzodioxoles/efectos adversos , Catalepsia/inducido químicamente , Diazepam/efectos adversos , Diazepam/uso terapéutico , Masculino , Piperidinas/efectos adversos , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant , Transducción de Señal/efectos de los fármacosRESUMEN
Accumulating evidence indicates that disruption of galanin signaling is associated with neuropsychiatric disease, but the precise functions of this neuropeptide remain largely unresolved due to lack of tools for experimentally disrupting its transmission in a cell type-specific manner. To examine the function of galanin in the noradrenergic system, we generated and crossed two novel knock-in mouse lines to create animals lacking galanin specifically in noradrenergic neurons (GalcKO-Dbh). We observed reduced levels of galanin peptide in pons, hippocampus, and prefrontal cortex of GalcKO-Dbh mice, indicating that noradrenergic neurons are a significant source of galanin to those brain regions, while midbrain and hypothalamic galanin levels were comparable to littermate controls. In these same brain regions, we observed no change in levels of norepinephrine or its major metabolite at baseline or after an acute stressor, suggesting that loss of galanin does not affect noradrenergic synthesis or turnover. GalcKO-Dbh mice had normal performance in tests of depression, learning, and motor-related behavior, but had an altered response in some anxiety-related tasks. Specifically, GalcKO-Dbh mice showed increased marble and shock probe burying and had a reduced latency to eat in a novel environment, indicative of a more proactive coping strategy. Together, these findings indicate that noradrenergic neurons provide a significant source of galanin to discrete brain areas, and noradrenergic-specific galanin opposes adaptive coping responses.
Asunto(s)
Adaptación Psicológica/fisiología , Neuronas Adrenérgicas/metabolismo , Encéfalo/metabolismo , Galanina/metabolismo , Animales , Femenino , Galanina/genética , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Masculino , Ratones Noqueados , Puente/metabolismo , Corteza Prefrontal/metabolismoRESUMEN
Chemogenetic technologies, including the mutated human Gq-coupled M3 muscarinic receptor (hM3Dq), have greatly facilitated our ability to directly link changes in cellular activity to altered physiology and behavior. Here, we extend the hM3Dq toolkit with recombinase-responsive mouse lines that permit hM3Dq expression in virtually any cell type. These alleles encode a fusion protein designed to increase effective expression levels by concentrating hM3Dq to the cell body and dendrites. To illustrate their broad utility, we targeted three different genetically defined cell populations: noradrenergic neurons of the compact, bilateral locus coeruleus and two dispersed populations, Camk2a+ neurons and GFAP+ glia. In all three populations, we observed reproducible expression and confirmed that activation of hM3Dq is sufficient to dose-dependently evoke phenotypic changes, without extreme phenotypes associated with hM3Dq overexpression. These alleles offer the ability to non-invasively control activity of diverse cell types to uncover their function and dysfunction at any developmental stage.
Asunto(s)
Drogas de Diseño/farmacología , Técnicas Genéticas , Integrasas/metabolismo , Receptor Muscarínico M3/genética , Alelos , Animales , Ansiedad/complicaciones , Ansiedad/patología , Ansiedad/fisiopatología , Conducta Animal/efectos de los fármacos , Clozapina , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Ritmo Gamma/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Hipotermia/complicaciones , Hipotermia/patología , Hipotermia/fisiopatología , Locomoción/efectos de los fármacos , Ratones , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Recombinación Genética/genéticaRESUMEN
Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise.
Asunto(s)
Ansiedad/psicología , Encéfalo/metabolismo , Galanina/metabolismo , Norepinefrina/metabolismo , Condicionamiento Físico Animal/psicología , Estrés Psicológico/psicología , Animales , Ansiedad/metabolismo , Condicionamiento Físico Animal/fisiología , Ratas , Estrés Psicológico/metabolismoRESUMEN
Although exercise improves anxiety in humans, it is controversial whether exercise is anxiolytic in rodents. We tested the hypothesis that stress influences the effect of exercise on anxiety-like and defensive behaviors. To explore the neurobiological mechanisms of exercise, we also examined whether exercise alters gene expression for the stress-related peptide galanin. Rats were housed in the presence or absence of a running wheel for 21 d. A subset of these rats were (1) not injected or received a single high, dose of the ß-carboline FG7142 (inverse agonist at the benzodiazepine receptor site) immediately prior to testing or (2) were injected repeatedly with vehicle or FG7142 during the last 10d of exercise. On day 22, anxiety-like and defensive behaviors were measured in the elevated plus maze, shock probe defensive burying, and defensive withdrawal tests. Locus coeruleus prepro-galanin mRNA was measured by in situ hybridization. Exercise and sedentary rats that were not injected exhibited similar behavior in all tests, whereas FG7142 injected immediately prior to the test battery produced intense avoidance and immobility consistent with an anxiety-like response. However, exercise produced anxiolytic-like and active defensive behaviors in the test battery relative to the sedentary condition in rats injected repeatedly with vehicle or FG7142. Exercise also increased prepro-galanin mRNA in the locus coeruleus relative to sedentary controls. These data suggest that the emergence of enhanced adaptive behavior after chronic voluntary exercise is influenced by stress. Our data support a role for galanin in the beneficial consequences of wheel running.
Asunto(s)
Ansiedad/patología , Galanina/metabolismo , Regulación de la Expresión Génica/fisiología , Locus Coeruleus/metabolismo , Condicionamiento Físico Animal/efectos adversos , Análisis de Varianza , Animales , Ansiedad/inducido químicamente , Ansiedad/rehabilitación , Peso Corporal/efectos de los fármacos , Carbolinas/toxicidad , Mecanismos de Defensa , Antagonistas del GABA/toxicidad , Galanina/genética , Regulación de la Expresión Génica/efectos de los fármacos , Pérdida de Tono Postural/efectos de los fármacos , Pérdida de Tono Postural/fisiología , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Sprague-DawleyRESUMEN
Peripheral cannabinoid receptors exert a powerful inhibitory control over pain initiation, but the endocannabinoid signal that normally engages this intrinsic analgesic mechanism is unknown. To address this question, we developed a peripherally restricted inhibitor (URB937) of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide. URB937 suppressed FAAH activity and increased anandamide levels outside the rodent CNS. Despite its inability to access brain and spinal cord, URB937 attenuated behavioral responses indicative of persistent pain in rodent models of peripheral nerve injury and inflammation and prevented noxious stimulus-evoked neuronal activation in spinal cord regions implicated in nociceptive processing. CB1 cannabinoid receptor blockade prevented these effects. These results suggest that anandamide-mediated signaling at peripheral CB1 receptors controls the access of pain-related inputs to the CNS. Brain-impenetrant FAAH inhibitors, which strengthen this gating mechanism, might offer a new approach to pain therapy.