Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36902103

RESUMEN

Scleroderma is a chronic fibrotic disease, where proinflammatory and profibrotic events precede collagen accumulation. MKP-1 [mitogen-activated protein kinase (MAPK) phosphatase-1] downregulates inflammatory MAPK pathways suppressing inflammation. MKP-1 also supports Th1 polarization, which could shift Th1/Th2 balance away from profibrotic Th2 profile prevalent in scleroderma. In the present study, we investigated the potential protective role of MKP-1 in scleroderma. We utilized bleomycin-induced dermal fibrosis model as a well-characterized experimental model of scleroderma. Dermal fibrosis and collagen deposition as well as the expression of inflammatory and profibrotic mediators were analyzed in the skin samples. Bleomycin-induced dermal thickness and lipodystrophy were increased in MKP-1-deficient mice. MKP-1 deficiency enhanced collagen accumulation and increased expression of collagens, 1A1 and 3A1, in the dermis. Bleomycin-treated skin from MKP-1-deficient mice also showed enhanced expression of inflammatory and profibrotic factors IL-6, TGF-ß1, fibronectin-1 and YKL-40, and chemokines MCP-1, MIP-1α and MIP-2, as compared to wild-type mice. The results show, for the first time, that MKP-1 protects from bleomycin-induced dermal fibrosis, suggesting that MKP-1 favorably modifies inflammation and fibrotic processes that drive the pathogenesis of scleroderma. Compounds enhancing the expression or activity of MKP-1 could thus prevent fibrotic processes in scleroderma and possess potential as a novel immunomodulative drug.


Asunto(s)
Fosfatasa 1 de Especificidad Dual , Esclerodermia Sistémica , Piel , Animales , Ratones , Bleomicina , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Inflamación/patología , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/patología , Piel/enzimología , Piel/patología , Fosfatasa 1 de Especificidad Dual/deficiencia
2.
Lab Invest ; 102(9): 989-999, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35484291

RESUMEN

Wnt-1 inducible signaling pathway protein 2 (WISP-2/CCN5) is a recently identified adipokine that has been described as an important mediator of canonical Wnt activation in adipogenic precursor cells. In osteoarthritis (OA), the most common form of arthritis, chondrocytes exhibit aberrant and increased production of pro-inflammatory mediators and matrix degrading enzymes such as IL-1ß and MMP-13. Although recent evidence suggests a role for Wnt signaling in OA physiopathology, little is known about the involvement of WISP-2 in cartilage degradation. In the present study, we determined the expression of WISP-2 in healthy and OA human chondrocytes. WISP-2 expression is modulated along chondrocyte differentiation and downregulated at the onset of hypertrophy by inflammatory mediators. We also investigated the effect of WISP-2 on cartilage catabolism and performed WISP-2 loss-of-function experiments using RNA interference technology in human T/C-28a2 immortalized chondrocytes. We demonstrated that recombinant human WISP-2 protein reduced IL-1ß-mediated chondrocyte catabolism, that IL-1ß and WNT/b-catenin signaling pathways are involved in rhWISP-2 protein and IL-1ß effects in human chondrocytes, and that WISP-2 has a regulatory role in attenuating the catabolic effects of IL-1ß in chondrocytes. Gene silencing of WISP-2 increased the induction of the catabolic markers MMP-13 and ADAMTS-5 and the inflammatory mediators IL-6 and IL-8 triggered by IL-1ß in human primary OA chondrocytes in a Wnt/ß-catenin dependent manner. In conclusion, here we have shown for the first time that WISP-2 may have relevant roles in modulating the turnover of extracellular matrix in the cartilage and that its downregulation may detrimentally alter the inflammatory environment in OA cartilage. We also proved the participation of Wnt/ß-catenin signaling pathway in these processes. Thus, targeting WISP-2 might represent a potential therapeutical approach for degenerative and/or inflammatory diseases of musculoskeletal system, such as osteoarthritis.


Asunto(s)
Condrocitos , Osteoartritis , Proteínas CCN de Señalización Intercelular , Cartílago , Células Cultivadas , Humanos , Mediadores de Inflamación , Interleucina-1beta , Metaloproteinasa 13 de la Matriz , Proteínas Represoras , Vía de Señalización Wnt
3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955527

RESUMEN

The inflammatory response is an adaptive mechanism that evolved to fight against infections and tissue damage [...].


Asunto(s)
Inflamación , Humanos
4.
Inflamm Res ; 69(4): 415-421, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32095874

RESUMEN

OBJECTIVE: Retinol binding protein 4 (RBP4) is a member of the lipocalin family and a vitamin A carrier in the blood. More recently, RBP4 has been described as an adipokine that is involved in insulin resistance and metabolic syndrome (MetS). As obesity, MetS and some adipokines contribute to the pathogenesis of osteoarthritis (OA), we investigated RBP4 in patients with OA. MATERIALS AND METHODS: Cartilage, synovial fluid and blood samples were collected from 100 OA patients undergoing total knee replacement surgery. Primary chondrocytes and cartilage tissue were cultured to measure the RBP4 expression. The concentrations of RBP4, other adipokines (adipsin, adiponectin, leptin and resistin) and biomarkers of OA (COMP, MMP-1, MMP-3 and YKL-40) were measured by immunoassay, and gene expression was measured by next-generation RNA sequencing. RESULTS: The OA cartilage samples released RBP4 into the culture medium, and the levels correlated positively with the expression of the adipokines adipsin, adiponectin, leptin and resistin. RBP4 was the most prominently expressed of these adipokines in the OA chondrocytes, and the expression of the RBP4 receptors STRA6 (stimulated by retinoic acid gene homologue 6) and TLR4 (Toll-like receptor 4) was also detected. Within the cartilage culture medium, RBP4 showed a positive correlation with MMP-1, MMP-3 and YKL-40. RBP4 was also present in the synovial fluid from the OA patients and correlated positively with the concentrations of RBP4 found in the plasma and the cartilage culture medium. Plasma RBP4 concentrations also showed a positive correlation with MMP-3 and adipsin. CONCLUSIONS: We show here, for the first time, that RBP4 is produced within OA joints and that it is associated with increased levels of adipokines and MMPs. The results suggest a role for RBP4 in the pathogenesis of OA and as a possible target for the disease-modifying drugs for the treatment of OA.


Asunto(s)
Adipoquinas/metabolismo , Osteoartritis/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Anciano , Anciano de 80 o más Años , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Femenino , Humanos , Articulación de la Rodilla/metabolismo , Masculino , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo , Persona de Mediana Edad , Proteínas Plasmáticas de Unión al Retinol/genética , Líquido Sinovial/metabolismo
5.
Cell Physiol Biochem ; 49(6): 2414-2426, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30261513

RESUMEN

BACKGROUND/AIMS: Oleocanthal (OC), a phenolic compound present in extra virgin olive oil (EVOO), has attracted attention since its discovery for its relevant pharmacological properties in different pathogenic processes, including inflammation. Here, we investigated the involvement of OC in LPS-activated osteoarthritis (OA) human primary chondrocytes. METHODS: Human primary chondrocytes were harvested from articular cartilage samples obtained from OA patients. The effects of OC on the viability of chondrocytes were tested by MTT assay. Protein and mRNA expression of several catabolic and pro-inflammatory factors after OC treatment were measured by RT-qPCR and western blot respectively. Moreover, we analysed the NO production by Griess reaction. Finally, several pathways mediators were analysed by western blot. RESULTS: We demonstrated that OC did not have any cytotoxic effect. Oleocanthal inhibited NO production and strongly decreased NOS2 and COX-2 protein and mRNA expression in LPS-activated human primary OA chondrocytes. Interestingly, OC also inhibits MMP-13 and ADAMTS-5. In addition, OC downregulates several pro-inflammatory factors, such as IL-6, IL-8, CCL3, LCN2 and TNF-α induced by LPS in human primary OA chondrocytes. Finally, we demonstrated that OC exerts its effects through the MAPK/P38/NF-kB pathways. CONCLUSION: These data show that OC is able to block LPS-mediated inflammatory response and MMP-13 and ADAMTS-5 induction in human primary OA chondrocytes via MAPKs/NF-kB pathways, suggesting that OC may be a promising agent for the treatment of inflammation in cartilage and a potential molecule to prevent disease progression by inhibiting metalloproteases and aggrecanases.


Asunto(s)
Aldehídos/farmacología , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Fenoles/farmacología , Transducción de Señal/efectos de los fármacos , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Aldehídos/química , Cartílago/citología , Células Cultivadas , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Monoterpenos Ciclopentánicos , Humanos , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Fenoles/química , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Cell Physiol Biochem ; 45(6): 2401-2410, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29550824

RESUMEN

BACKGROUND/AIMS: The E74-like factor 3 (ELF3) is an inflammatory mediator that participates in cartilage destruction in osteoarthritis. Leptin and other adipokines negatively impact articular cartilage, triggering catabolic and inflammatory responses in chondrocytes. Here, we investigated whether leptin induces ELF3 expression in chondrocytes and the signaling pathway involved in this process. METHODS: We determined mRNA and protein levels of ELF3 by RT-qPCR and Western blotting using cultured human primary chondrocytes and the human T/C-28a2 chondrocyte cell line. Further, we measured luciferase activities of different reporter constructs, and we assessed the contribution of leptin to the induction of ELF3 mRNA by knocking down hLEPR gene expression using siRNA technology. RESULTS: Leptin synergizes with IL-1ß in inducing ELF3 expression in chondrocytes. We also found that PI3K, p38, and JAK2 signaling pathways are at play in the leptin-driven induction of ELF3. Moreover, we confirm the participation of NFΚB in the leptin/IL-1ß synergistic induction of ELF3. CONCLUSION: Here we show, for the first time, the regulation of ELF3 expression by leptin, suggesting that this transcription factor likely mediates the inflammatory responses triggered by leptin in articular chondrocytes.


Asunto(s)
Condrocitos/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Inflamación/genética , Leptina/inmunología , Obesidad/genética , Proteínas Proto-Oncogénicas c-ets/genética , Factores de Transcripción/genética , Cartílago/inmunología , Cartílago/metabolismo , Línea Celular , Células Cultivadas , Condrocitos/inmunología , Proteínas de Unión al ADN/inmunología , Humanos , Inflamación/inmunología , Interleucina-1beta/inmunología , Leptina/genética , Obesidad/inmunología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-ets/inmunología , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Receptores de Leptina/genética , Receptores de Leptina/inmunología , Factores de Transcripción/inmunología , Activación Transcripcional
7.
J Physiol ; 594(21): 6133-6146, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27222093

RESUMEN

KEY POINTS: E74-like factor 3 (ELF3) is a transcription factor regulated by inflammation in different physio-pathological situations. Lipocalin-2 (LCN2) emerged as a relevant adipokine involved in the regulation of inflammation. In this study we showed for the first time the involvement of ELF3 in the control of LCN2 expression and its cooperation with nuclear factor-κB (NFκB). Our results will help to better understand of the role of ELF3, NFκB and LCN2 in the pathophysiology of articular cartilage. ABSTRACT: E74-like factor 3 (ELF3) is a transcription factor induced by inflammatory cytokines in chondrocytes that increases gene expression of catabolic and inflammatory mediators. Lipocalin 2 (LCN2) is a novel adipokine that negatively impacts articular cartilage, triggering catabolic and inflammatory responses in chondrocytes. Here, we investigated the control of LCN2 gene expression by ELF3 in the context of interleukin 1 (IL-1)-driven inflammatory responses in chondrocytes. The interaction of ELF3 and nuclear factor-κB (NFκB) in modulating LCN2 levels was also explored. LCN2 mRNA and protein levels, as well those of several other ELF3 target genes, were determined by RT-qPCR and Western blotting. Human primary chondrocytes, primary chondrocytes from wild-type and Elf3 knockout mice, and immortalized human T/C-28a2 and murine ATDC5 cell lines were used in in vitro assays. The activities of various gene reporter constructs were evaluated by luciferase assays. Gene overexpression and knockdown were performed using specific expression vectors and siRNA technology, respectively. ELF3 overexpression transactivated the LCN2 promoter and increased the IL-1-induced mRNA and protein levels of LCN2, as well as the mRNA expression of other pro-inflammatory mediators, in human and mouse chondrocytes. We also identified a collaborative loop between ELF3 and NFκB that amplifies the induction of LCN2. Our findings show a novel role for ELF3 and NFκB in the induction of the pro-inflammatory adipokine LCN2, providing additional evidence of the interaction between ELF3 and NFκB in modulating inflammatory responses, and a better understanding of the mechanisms of action of ELF3 in chondrocytes.


Asunto(s)
Condrocitos/metabolismo , Proteínas de Unión al ADN/metabolismo , Lipocalina 2/metabolismo , FN-kappa B/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Lipocalina 2/genética , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Biomarkers ; 20(8): 565-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26671823

RESUMEN

Lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin (NGAL), is a secreted glycoprotein that belongs to a group of transporters of small lipophilic molecules in circulation. LCN2 has been recently characterized as an adipose-derived cytokine. This adipokine is believed to bind small substances, such as steroids and lipopolysaccharides, and has been reported to have roles in the induction of apoptosis in hematopoietic cells, transport of fatty acids and iron, modulation of inflammation, and metabolic homeostasis. Recently, LCN2 has emerged as a useful biomarker and rheumatic diseases. This review provides an overview of LCN2 in inflammation, immunity, and metabolism.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Lipocalinas/metabolismo , Enfermedades Metabólicas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Biomarcadores/metabolismo , Humanos , Inflamación/diagnóstico , Lipocalina 2 , Enfermedades Metabólicas/diagnóstico , Valor Predictivo de las Pruebas , Pronóstico
9.
Trends Cancer ; 10(7): 576-578, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866669

RESUMEN

Approved BRAF inhibitors have shown limited clinical benefit due to recurrent disease progression. In a recent Cancer Discovery paper, Yaeger et al. show that a next-generation BRAF inhibitor, PF-07799933, has widespread therapeutic activity in experimental models and patients who were refractory to treatment with approved BRAF inhibitors.


Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/genética , Melanoma/inmunología , Mutación
10.
Arthritis Res Ther ; 25(1): 12, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698198

RESUMEN

BACKGROUND: Systemic sclerosis is a rheumatoid disease best known for its fibrotic skin manifestations called scleroderma. Alternatively activated (M2-type) macrophages are normally involved in the resolution of inflammation and wound healing but also in fibrosing diseases such as scleroderma. TRPA1 is a non-selective cation channel, activation of which causes pain and neurogenic inflammation. In the present study, we investigated the role of TRPA1 in bleomycin-induced skin fibrosis mimicking scleroderma. METHODS: Wild type and TRPA1-deficient mice were challenged with intradermal bleomycin injections to induce a scleroderma-mimicking disease. Macrophages were investigated in vitro to evaluate the underlying mechanisms. RESULTS: Bleomycin induced dermal thickening and collagen accumulation in wild type mice and that was significantly attenuated in TRPA1-deficient animals. Accordingly, the expression of collagens 1A1, 1A2, and 3A1 as well as pro-fibrotic factors TGF-beta, CTGF, fibronectin-1 and YKL-40, and M2 macrophage markers Arg1 and MRC1 were lower in TRPA1-deficient than wild type mice. Furthermore, bleomycin was discovered to significantly enhance M2-marker expression particularly in the presence of IL-4 in wild type macrophages in vitro, but not in macrophages harvested from TRPA1-deficient mice. IL-4-induced PPARγ-expression in macrophages was increased by bleomycin, providing a possible mechanism behind the phenomenon. CONCLUSIONS: In conclusion, the results indicate that interfering TRPA1 attenuates fibrotic and inflammatory responses in bleomycin-induced scleroderma. Therefore, TRPA1-blocking treatment could potentially alleviate M2 macrophage driven diseases like systemic sclerosis and scleroderma.


Asunto(s)
Esclerodermia Localizada , Esclerodermia Sistémica , Ratones , Animales , Bleomicina/toxicidad , Activación de Macrófagos , Interleucina-4/efectos adversos , Interleucina-4/metabolismo , Esclerodermia Sistémica/patología , Fibrosis , Colágeno/metabolismo , Esclerodermia Localizada/inducido químicamente , Esclerodermia Localizada/patología , Modelos Animales de Enfermedad , Piel/patología , Canal Catiónico TRPA1/genética
11.
Mediators Inflamm ; 2012: 125458, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22910888

RESUMEN

Patients with rheumatic diseases have an increased risk of mortality by cardiovascular events. In fact, several rheumatic diseases such as rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, and ankylosing spondylitis are associated with a higher prevalence of cardiovascular diseases (CVDs). Although traditional cardiovascular risk factors have been involved in the pathogenesis of cardiovascular diseases in rheumatic patients, these alterations do not completely explain the enhanced cardiovascular risk in this population. Obesity and its pathologic alteration of fat mass and dysfunction, due to an altered pattern of secretion of proinflammatory adipokines, could be one of the links between cardiovascular and rheumatic diseases. Indeed, the incidence of CVDs is augmented in obese individuals with rheumatic disorders. Thus, in this paper we explore in detail the relationships among adipokines, rheumatic diseases, and cardiovascular complications by giving to the reader a holistic vision and several suggestions for future perspectives and potential clinical implications.


Asunto(s)
Adipoquinas/metabolismo , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Reumáticas/metabolismo , Adiponectina/metabolismo , Animales , Humanos , Leptina/metabolismo
12.
Aging (Albany NY) ; 14(15): 5966-5983, 2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35779570

RESUMEN

Mitochondria and mtDNA variations contribute to specific aspects of the aging process. Here, we aimed to investigate the influence of mtDNA variation on joint damage in a model of aging using conplastic mice. A conplastic (BL/6NZB) mouse strain was developed with the C57BL/6JOlaHsd nuclear genome and NZB/OlaHsd mtDNA, for comparison with the original C57BL/6JOlaHsd strain (BL/6C57). Conplastic (BL/6NZB) and BL/6C57 mice were sacrificed at 25, 75, and 90 weeks of age. Hind knee joints were processed for histological analysis and joint pathology graded using the Mankin scoring system. By immunohistochemistry, cartilage expression of markers of autophagy (LC3, Beclin-1, and P62) and markers of senescence (MMP13, beta-Galactosidase, and p16) and proliferation (Ki67) were analyzed. We also measured the expression of 8-oxo-dG and cleaved caspase-3. Conplastic (BL/6NZB) mice presented lower Mankin scores at 25, 75, and 90 weeks of age, higher expression of LC3 and Beclin-1 and lower of P62 in cartilage than the original strain. Moreover, the downregulation of MMP13, beta-Galactosidase, and p16 was detected in cartilage from conplastic (BL/6NZB) mice, whereas higher Ki67 levels were detected in these mice. Finally, control BL/6C57 mice showed higher cartilage expression of 8-oxo-dG and cleaved caspase-3 than conplastic (BL/6NZB) mice. This study demonstrates that mtDNA genetic manipulation ameliorates joint aging damage in a conplastic mouse model, suggesting that mtDNA variability is a prognostic factor for aging-related osteoarthritis (OA) and that modulation of mitochondrial oxidative phosphorylation (OXPHOS) could be a novel therapeutic target for treating OA associated with aging.


Asunto(s)
ADN Mitocondrial , Osteoartritis , 8-Hidroxi-2'-Desoxicoguanosina , Envejecimiento/fisiología , Animales , Beclina-1/genética , Beclina-1/metabolismo , Caspasa 3/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Modelos Animales de Enfermedad , Antígeno Ki-67/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , beta-Galactosidasa/metabolismo
13.
Arthritis Rheumatol ; 74(2): 212-222, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34398520

RESUMEN

OBJECTIVE: To investigate whether thermogenesis and the hypothalamus may be involved in the physiopathology of experimental arthritis (EA). METHODS: EA was induced in male Lewis rats by intradermal injection of Freund's complete adjuvant (CFA). Food intake, body weight, plasma cytokines, thermographic analysis, gene and protein expression of thermogenic markers in brown adipose tissue (BAT) and white adipose tissue (WAT), and hypothalamic AMP-activated protein kinase (AMPK) were analyzed. Virogenetic activation of hypothalamic AMPK was performed. RESULTS: We first demonstrated that EA was associated with increased BAT thermogenesis and browning of subcutaneous WAT leading to elevated energy expenditure. Moreover, rats experiencing EA showed inhibition of hypothalamic AMPK, a canonical energy sensor modulating energy homeostasis at the central level. Notably, specific genetic activation of AMPK in the ventromedial nucleus of the hypothalamus (a key site modulating energy metabolism) reversed the effect of EA on energy balance, brown fat, and browning, as well as promoting amelioration of synovial inflammation in experimental arthritis. CONCLUSION: Overall, these data indicate that EA promotes a central catabolic state that can be targeted and reversed by the activation of hypothalamic AMPK. This might provide new therapeutic alternatives to treat rheumatoid arthritis (RA)-associated metabolic comorbidities, improving the overall prognosis in patients with RA.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Artritis/metabolismo , Artritis/fisiopatología , Hipotálamo/enzimología , Termogénesis , Animales , Artritis/complicaciones , Masculino , Ratas , Ratas Endogámicas Lew
14.
Ann Rheum Dis ; 70(3): 551-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21216818

RESUMEN

BACKGROUND: Obesity is a major risk factor for a plethora of diseases including joint disorders associated with cartilage destruction. Recently, it has been demonstrated that adipose tissue might contribute to degenerative joint diseases via the secretion of potent bioactive molecules termed adipokines. OBJECTIVE: To study expression of the novel adipokines chemerin, lipocalin 2 (LCN2) and serum amyloid A3 (SAA3) in murine and human chondrocytes, under basal conditions, in response to a range of biological and pharmacological treatments, and during chondrocyte differentiation. METHODS: Chemerin, LCN2 and SAA3 mRNA and protein expression were evaluated by quantitative real-time reverse transcription PCR and western blot analysis, respectively, in the ATDC-5 murine chondrocyte cell line, a human immortalised chondrocyte cell line (T/C-28a2) and primary cultured human chondrocytes. RESULTS: Human and murine chondrocytes expressed chemerin, LCN2 and SAA3 mRNA; interleukin (IL)-1ß was a potent inducer of these novel adipokines. Moreover, dexamethasone, lipopolysaccharides (LPS) and other relevant adipokines such as leptin and adiponectin were able to modulate chemerin, LCN2 and SAA3 mRNA expression alone and when coadministered. Intracellular signal transducers involved in the IL-1ß-mediated upregulation of LCN2 and SAA3 included Janus kinase (JAK) 2, phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein (MAP) kinases. Finally, expression of chemerin, LCN2 and SAA3 mRNA expression were modulated throughout chondrocyte differentiation. CONCLUSION: Chemerin, LCN2 and SAA3 are implicated in chondrocyte pathophysiology, and regulated by other relevant factors that drive inflammatory process such as IL-1ß, LPS and adipokines including leptin and adiponectin. It seems likely that JAK2, PI3K and MAP kinases are involved in mediating these responses.


Asunto(s)
Adipoquinas/biosíntesis , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Proteínas de Fase Aguda/biosíntesis , Proteínas de Fase Aguda/genética , Adipoquinas/genética , Adipoquinas/farmacología , Animales , Cartílago Articular/citología , Diferenciación Celular/fisiología , Células Cultivadas , Quimiocinas/biosíntesis , Quimiocinas/genética , Factores Quimiotácticos/biosíntesis , Factores Quimiotácticos/genética , Condrocitos/citología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Interleucina-1beta/farmacología , Lipocalina 2 , Lipocalinas/biosíntesis , Lipocalinas/genética , Ratones , Proteínas Oncogénicas/biosíntesis , Proteínas Oncogénicas/genética , ARN Mensajero/genética , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Proteína Amiloide A Sérica/biosíntesis , Proteína Amiloide A Sérica/genética , Transducción de Señal/fisiología
15.
ScientificWorldJournal ; 11: 1932-47, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22194660

RESUMEN

The cloning of leptin in 1994 by Zhang et al. introduced a novel concept about white adipose tissue (WAT) as a very dynamic organ that releases a plethora of immune and inflammatory mediators, such as adipokines and cytokines, which are involved in multiple diseases. Actually, adipokines exert potent modulatory actions on target tissues involved in rheumatic diseases including cartilage, synovial, bone and immune cells. The goal of this paper is to elucidate the recent findings concerning the involvement of adipokines in rheumatic diseases, such as rheumatoid arthritis (RA), osteoarthritis (OA), and systemic lupus erythematosus (SLE).


Asunto(s)
Adipoquinas/inmunología , Enfermedades Reumáticas/inmunología , Proteínas de Fase Aguda/inmunología , Proteínas de Fase Aguda/metabolismo , Adipoquinas/metabolismo , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Animales , Apelina , Artritis Reumatoide/inmunología , Artritis Reumatoide/fisiopatología , Quimiocinas/inmunología , Quimiocinas/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/inmunología , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/inmunología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lipocalina 2 , Lipocalinas/inmunología , Lipocalinas/metabolismo , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/fisiopatología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , Nicotinamida Fosforribosiltransferasa/farmacología , Osteoartritis/inmunología , Osteoartritis/fisiopatología , Proteínas Proto-Oncogénicas/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Enfermedades Reumáticas/fisiopatología
16.
Cartilage ; 13(2_suppl): 925S-934S, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532182

RESUMEN

OBJECTIVE: Osteoarthritis (OA) is an age-related biomechanical and low-grade inflammometabolic disease of the joints and one of the costliest and disabling forms of arthritis. Studies on matrix-degrading enzymes such as metalloproteases, which are implicated in the increased catabolism of extracellular matrix, are of paramount relevance. DKK3 is a member of DKK family and is best known for its role in cancer. Although there is some information about the participation of DKK3 in cartilage pathophysiology and on metalloproteases regulation, in particular, little is known about DKK3 signaling mechanisms. Thus, the aim of this study is to explore how DKK3 regulates matrix metalloproteinase-13 (MMP-13) expression. DESIGN: Gene, protein expression and protein phosphorylation in primary human chondrocytes and ATDC5 mouse cells were assessed by RT-qPCR and Western blot analysis. Further studies on DKK3 activity were performed by targeting DKK3 gene with a specific siRNA. RESULTS: DKK3 expression was found to be higher in OA human chondrocytes than healthy cells, being its expression decreased in interleukin-1α (IL-1α)-stimulated cells. DKK3 knockdown increased the induction of MMP-13 elicited by IL-1α in human and mouse chondrocytes and after the analysis of different signalling pathways, we observed that NF-κB pathway was involved in the regulation of MMP-13 expression by DKK3. CONCLUSIONS: Herein we have demonstrated, for the first time, that DKK3 gene silencing exacerbated NF-κB activation, resulting in an increased IL-1α-driven induction of MMP-13. Our results further confirm that DKK3 may play a protective role in OA by attenuating NF-κB activation and the subsequent production of metalloproteases.


Asunto(s)
Condrocitos , Osteoartritis , Animales , Condrocitos/metabolismo , Interleucina-1alfa/metabolismo , Ratones , FN-kappa B/metabolismo , Osteoartritis/metabolismo , Transducción de Señal
17.
Sci Rep ; 11(1): 9112, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907208

RESUMEN

It has been suggested that mitochondrial dysfunction and mtDNA variations may contribute to osteoarthritis (OA) pathogenesis. However, the causative link to support this claim is lacking. Here, we surgically-induced OA in conplastic mice in order to evaluate the functional consequences of mtDNA haplotypes in their joint degeneration. BL/6NZB strain was developed with C57BL/6JOlaHsd nuclear genome and NZB/OlaHsdmtDNA while BL/6C57, which is the original, was developed with C57BL/6JOlaHsd nuclear genome and C57/OlaHsdmtDNA for comparison. The surgical DMM OA model was induced in both strains. Their knees were processed and examined for histopathological changes. Cartilage expression of markers of autophagy, apoptosis, oxidative stress and senescence were also analyzed by immunohistochemistry. The joints of BL/6NZB mice that were operated presented more cellularity together with a reduced OARSI histopathology score, subchondral bone, menisci score and synovitis compared to those of BL/6C57 mice. This was accompanied with higher autophagy and a lower apoptosis in the cartilage of BL/6NZB mice that were operated. Therefore, the study demonstrates the functional impact of non-pathological variants of mtDNA on OA process using a surgically-induced OA model. Conplastic (BL/6NZB ) mice develop less severe OA compared to the BL/6C57original strain. These findings demonstrate that mitochondria and mtDNA are critical targets for potential novel therapeutic approaches to treat osteoarthritis.


Asunto(s)
ADN Mitocondrial , Osteoartritis/genética , Osteoartritis/fisiopatología , Animales , Apoptosis/genética , Autofagia , Cartílago Articular/patología , Modelos Animales de Enfermedad , Masculino , Meniscos Tibiales/fisiopatología , Meniscos Tibiales/cirugía , Ratones Endogámicos C57BL , Ratones Endogámicos , Osteoartritis/etiología , Sinovitis/etiología , Sinovitis/genética
19.
J Agric Food Chem ; 67(14): 3845-3853, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30875206

RESUMEN

Extra virgin olive oil (EVOO) is the main source of fat in the Mediterranean diet. Phenolic compounds of EVOO, in particular, secoiridoids, are minor components that have generated special interest due to their positive effects on human health, supported by several clinical trials. This review summarizes the most recent findings on the pharmacological properties and action's mechanisms of secoiridoid oleocanthal, focusing attention on inflammation, oxidative stress, cancer, neurodegenerative processes, and rheumatic diseases. Being of relevance to the clinical effects of EVOO intake, the bioavailability and biotransformation of EVOO polyphenols are addressed. Moreover, this review summarizes the factors that may influence the oleocanthal concentration in EVOO. With the growing incidence of age- and lifestyle-related diseases, the current data indicated that the administration of EVOO rich in secoiridoids may be helpful in the prevention or treatment of different pathologies with an inflammatory component. Although promising, the future raises several questions and challenges, which are discussed here. The real beneficial effects of olive oil phenols on human health need to be clarified in new, well-designed clinical studies.


Asunto(s)
Aldehídos/metabolismo , Inflamación/dietoterapia , Aceite de Oliva/metabolismo , Fenoles/metabolismo , Aldehídos/química , Animales , Monoterpenos Ciclopentánicos , Estilo de Vida Saludable , Humanos , Inflamación/genética , Inflamación/inmunología , Olea/química , Olea/metabolismo , Aceite de Oliva/química , Fenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA